REVISTA ASTRONÓMICA
ORGANO MENSUAL DE LOS
"AMIGOS DE LA ASTRONOMIA"
DIRECTOR:
CARLOS CARDALDA
BUENOS AIRES

SUMARIO

Mapa del cielo, clase dictada por el Señor Alfredo Völsch (Conclusión).

Descubrimiento de una estrella variable, por Martin Dartayet.

Calendario, por S. Newcomb y R. Engelmann.

Modo de fabricar un antejo económico, por Ulises Bergara.

Posición de las constelaciones para el horizonte de Buenos Aires, por Alfredo Völsch.

Problemas matemático - astronómicos, por A. V.

Bosquejos biográficos, por N. E.

Sobre la conferencia del Sr. Ernesto de La Guardia.

Objeciones y réplicas.

Noticiario astronómico.

Noticias.

Comisión Directiva.

Nómina de socios.

SECRETARIA DE LA ASOC. WAGNERIANA DE BS. AS.
RODRIGUEZ PEÑA 361
BUENOS AIRES
(CONCLUSION)

El último concepto, considerando el mapa del cielo en la proyección estereográfica polar, el centro del dibujo como Cenit, la circunferencia como Horizonte, los círculos alrededor del Cenit como círculos de igual altura y las rectas desde el Cenit hasta el horizonte como el Azimut, se puede adoptar para cualquier punto terrestre, sea cuál fuere su posición geográfica. Pero, suponiendo al observador situado en el Polo mismo, resulta que el Cenit es a la vez el Polo, el Horizonte el Ecuador celeste, los círculos de Altura a la vez círculos de Declinación, formando las rectas del Azimut ángulos horarios del astro. Esto quiere decir, que en el Polo queda una estrella polar eternamente en el Cenit sin movimiento y los otros astros se mueven siempre en la misma altura que depende directamente de la declinación. Por consiguiente todos los astros visibles son circumpolares y el sol en la primavera u otoño hace en un día una vuelta en el horizonte, no saliendo ni poniéndose. No hay meridiano ni azimut, porque son en el polo términos indefinidos, cada dirección en el Polo Norte es el Azimut Sud, y la situación de un astro puede definirse únicamente respecto a su ángulo horario, siendo la altura igual a su declinación.

Hasta ahora hemos estudiado únicamente la proyección estereográfica polar. Hay también una proyección ecuatorial, la que se usa en muchos casos para representar en ella un hemisferio Este y otro Oeste, como, por ejemplo, el hemisferio americano y el otro de Eurasia, Africa. La vertical en la proyección polar es en este caso el meridiano central, la circunferencia el círculo de longitud a 90° de distancia al Este y Oeste, respectivamente. En la intersección de estos dos círculos con el meridiano central se encuentran los polos, Norte a un lado, Sud al opuesto. Los demás círculos de longitud están repartidos en distancias entre sí que aumentan del punto central hacia el borde en la proporción 1 a 2.

En forma similar van los círculos de latitud horizontalmente, formando el Ecuador la línea recta horizontal que divide la superficie en dos partes iguales, una boreal, otra austral, cruzándose con el meridiano central en el centro del mapa. Los demás círculos de latitud van en curvas circulares, aproximándose con el aumento de
latitud a los polos, pero guardando también las distancias entre sí el aumento de 1 a 2 del centro al borde. También en este caso podremos reemplazar estas coordenadas terrestres por celestes. Sustituimos únicamente el Meridiano central por Meridiano local, los de 90 y 270° o sea la circunferencia por el Horizonte, el centro del mapa por el Cenit del observador, el Ecuador terrestre y los polos terrestres por celestes, los círculos de Latitud por círculos de Declinación y los de Longitud por los de Ascensión recta o Ángulos horarios. Sería un mapa celeste para un observador situado en el Ecuador. El Meridiano local es a la vez el azimut Norte-Sud, encontrándose el polo en dirección Norte y en el horizonte y el polo Sud en el punto opuesto. El ecuador celeste marca a la vez la dirección Este-Oeste. Es aquí donde se mueve un astro con declinación 0°, o el sol en la primavera u otoño, saliendo a las 6 horas en el Este, alcanzando al mediodía el cenit, y poniéndose a las 18 horas en el Oeste. Esto quiere decir que el sol queda entonces siempre en dirección Este-Oeste, no alcanzando ninguna otra dirección hacia el Norte o Sud, con excepción del cenit, que tiene un azimut indefinido. Los círculos al Norte son de declinaciones boreales, los al Sud australes, e indican el movimiento diurno de los astros según su declinación. Los círculos verticales son los de Ascensión recta o el ángulo horario de los astros, dividiendo la esfera en 24 horas de una hora cada una con sus subdivisiones en minutos y segundos de tiempo. Estando representados en el hemisferio la mitad del total de estos círculos horarios, se comprende que en el Ecuador, sea cuál fuere la declinación, todos los astros salen 6 horas antes y se ponen 6 horas después de su paso por el meridiano, quedando una estrella polar inmóvil en el horizonte. No hay estrellas circumpolares.

Constatada como queda la imagen de la bóveda celeste en proyección estereográfica, según el observador esté situado en el Polo o en un punto del Ecuador, consideremos ahora qué cambio se realiza en la reproducción cuando el observador se encuentra en cualquier otro punto de la tierra, o sea la proyección estereográfica horizontal. En la polar el Polo está situado en el centro del mapa, en la ecuatorial en el borde. Resulta, pues, que el polo se desplaza en la imagen del borde hacia el centro a medida que la latitud del observador aumenta, quedando el cenit en cada proyección en el centro de la imagen, e indicando la distancia entre el centro hasta el polo la distancia polar, o sea el complemento de la latitud geográfica, correspondiendo al centro o sea al cenit la latitud del observador. De la misma manera se desplaza el ecuador del centro hacia abajo, de modo que la distancia entre el centro hasta el ecuador, medido en el meridiano, corresponde a la latitud geográfica.
Unicamente en el borde del mapa queda el ecuador en cada caso en el primer vertical. Considerando el mapa celeste en vez del terrestre reemplazamos únicamente Latitud por Declinación, Polo y Equador terrestre por celeste, es decir, un astro polar queda fijo en el polo visible a una altura igual a la latitud, un astro culmina en el cenit del observador con una declinación igual a la latitud, pasando los astros con declinación más austral en el meridiano en dirección al Polo Sud y viceversa, un astro situado en el ecuador sale 6 horas antes y se pone 6 horas después de su paso y éste se efectúa a una altura igual al complemento de la latitud geográfica del observador. Los círculos de declinación se producen en la imagen igualmente como círculos alrededor del polo, pero conservando siempre en cuanto a la distancia entre sí la ya conocida relación de 1 a 2 desde el centro hacia el borde. Por consiguiente, el centro de los círculos de declinación queda en la imagen cada vez más afuera del polo hacia arriba en cuanto disminuye la declinación, formando el círculo de declinación opuesto a la latitud del observador (+ 34° 36' en nuestro caso) un círculo con radio infinito, o sea una recta. Los círculos de mayor declinación boreal tienen su centro al lado opuesto, teniendo por consiguiente la curvatura hacia arriba.

Consideremos ahora los círculos que hacen tangente en la intersección del meridiano con el borde del mapa, o sea el horizonte. El situado arriba corresponde a un círculo de declinación con la distancia del polo igual a la latitud, es el círculo igual al complemento de la latitud de igual signo, como fácilmente se comprende, y tiene la propiedad de ser el círculo límite de los astros circumpolares. Todos los astros situados más allá del polo salen y se ponen, todos los situados más cerca del polo visible son circumpolares, es decir, tienen dos pasos por el meridiano, uno superior en dirección Norte o bien Sud, siendo en el último caso la declinación austral mayor que la latitud y otro paso inferior en el Sud. El círculo de declinación que hace tangente en la intersección del lado opuesto del meridiano con el horizonte, forma igualmente el complemento de la latitud geográfica, pero del otro signo, como una simple suma y resta lo comprueba. Es el círculo de declinación límite de la visibilidad de los astros para el observador. Siendo más boreal la declinación, los astros quedan invisibles, un astro en el círculo límite sale, pasa por el meridiano y se pone a la vez. Entre los mencionados límites salen y se ponen, pero de manera que los astros con declinación boreal lo hacen en el sector entre el Este y Oeste hacia el Norte (Sol en el invierno), y los con declinación austral hacia el Sud (Sol en el verano).
Falta mencionar solamente los círculos que hacen iguales ángulos alrededor del polo y que dividen el ecuador en partes iguales de horas, minutos y segundos, son los ángulos horarios que indican el tiempo que falta hasta el paso superior de un astro, si está situado en la parte Este del hemisferio o el tiempo que ha transcurrido desde su paso superior, si la situación del astro es en la parte Oeste del hemisferio. Una estrella con declinación 0º sale y se pone en el horizonte y en el primer vertical con un ángulo horario de 6 horas, todas las estrellas boreales tienen a la salida y puesta un ángulo horario de menos de 6 horas, las australes un ángulo de más de 6 horas, en el límite de los circumpolares el ángulo horario es de 12 horas, es decir, el astro se pone, hace su paso inferior y sale en el horizonte y en dirección Sud al mismo tiempo.

Finalmente, hay que explicar la diferencia que existe entre los dos términos Ascensión recta y Ángulo horario, cuya relación es similar a la relación entre el Meridiano de origen (Greenwich) y el Meridiano local. El primero tiene una longitud de 0º, origen convencional de la división del polo terrestre en iguales ángulos de longitud, mientras el meridiano local tiene la longitud del lugar con signo positivo al Oeste, negativo al Este y la diferencia entre ellos es igual al tiempo que necesita un astro desde su paso por el meridiano de origen hasta su paso por él del lugar. La bóveda celeste tiene también su meridiano de origen, es la Ascensión recta de 0 horas, donde se encuentra el punto vernal o el lugar del sol en la primavera, signo del zodiaco: "Aries". De la misma manera como el ecuador terrestre es dividido en grados de longitud, se divide el celeste en iguales partes de Ascensión recta, pero comúnmente no en grados, minutos y segundos de arco, sino en 24 horas y sus subdivisiones.

Ahora bien, a causa de la rotación de la tierra alrededor de su eje, el meridiano local del observador gira en 24 horas siderales, como hemos explicado al principio, alrededor de la bóveda celeste, lo que hace la impresión que fueran los astros que giran alrededor de nosotros. Resulta, pues, que habrá en cada día un momento en que el punto vernal pase por el meridiano, y como este punto tiene la Ascensión recta de 0 horas, un reloj sideral local debe indicar en este momento 0 horas. En cualquier otro momento el reloj nos dará el ángulo horario del punto vernal, o el círculo de Ascensión recta que corresponde a este ángulo horario. En nuestro primer mapa del mes de mayo, el punto vernal está precisamente en su paso inferior en dirección Sud, y siendo a la vez punto del ecuador, es naturalmente invisible. Por consiguiente, todos los astros de Ascensión recta opuesta, o de 12 horas, están en su paso superior en
el meridiano, y el reloj sideral local del observador debe indicar las 12 horas en este momento.

Habiendo demostrado las relaciones que existen entre Ascensión recta, Ángulo horario y Hora sideral, veremos que hay otra relación muy sencilla entre estos elementos y la Hora local y legal, como también con el Meridiano local y el del origen. Según el "Nav-
tical Almanac", calendario astronómico, el día 1º de junio a las 12 horas de Greenwich, son las 4h 38m tiempo sideral, y por consiguiente 11 horas 14 minutos más tarde, o sean 11h 16m en tiempo sideral por el intervalo de casi medio día, tendríamos:

23h 14m tiempo medio de Greenwich = 15h 54m tiempo sideral. Para Buenos Aires hay que restar de los datos mencionados 3h 54m por diferencia de longitud, y por consiguiente tenemos para Buenos Aires:

19h 20m hora local = 12h tiempo sideral local.

Teniendo en cuenta que en Buenos Aires la hora local se anticipa en 6 minutos a la hora legal (diferencia entre el meridiano local de Buenos Aires de 3h 54m al Oeste y el meridiano convencional de 60º, o sean 4 horas al Oeste de Greenwich — hora argentina, — corresponde a la mencionada hora local las:

19h 14m hora legal = 12h tiempo sideral local,

en cuyo momento el aspecto del cielo concuerda con el mapa N° 1 del mes de mayo. Ahora bien; para calcular el ángulo horario de "Arcturo", estrella brillante en la constelación de Bootes, buscamos su Ascensión recta en el mismo calendario o también en nues-

tro mapa, dándonos:

14h 12m, cuyo valor restamos del tiempo sideral local de 12h: — 2h 12m (al Este), que es el ángulo horario de "Arcturo" para el momento dado, o sean para las:

el paso por el meridiano se verifica 2 horas 12 minutos más tarde, o sean a las:

21h 26m del 1º de junio.

Tiempo legal.

Convendremos ahora que el mapa N° 2 del mes de julio nos da el mismo resultado, agregando a los valores anteriormente mencionados cuatro horas:
19h 20m hora local = 12h 4h T. medio = 4h
tiempo sideral local,

más: 4h tiempo sideral, despreciando

23h 20m hora local = 16h
el aumento de pocos segundos
en tiempo sideral, dándonos:
para el intervalo de 4 horas

en cuyo momento el aspecto del cielo concuerda con el mapa N° 2.

Haciendo el ejemplo resulta, pues:

A las 23h 20m hora local = 16h
menos: Ascensión recta
Angulo horario de "Arcturo" +
para las:
es decir, el paso por el meri-
diano ya se verificó 1h 48m an-
tes, o sean a las:

14h 12m
1h 48m (al Oeste)
23h 14m tiempo legal,

21h 26m del 1° de junio.

Tiempo legal,

o sea el mismo resultado de nuestro ejemplo anterior.

Como la declinación de "Arcturo" es de + 20° (boreal)
y nuestra latitud

resulta por diferencia entre los dos valores la

Distancia cenital de: 54 1/2° que corresponde a una altura de:

35 1/2°

en que se encuentra "Arcturo" a su paso por el meridiano el 1° de
junio a las 21 horas 26 minutos. Midiendo en nuestro mapa con la
escala la distancia del punto de intersección del meridiano con el
círculo de declinación 20° boreal, resulta el mismo valor de 35 1/2°
como altura de "Arcturo" a su paso por el meridiano.

Con estos ejemplos simples de transformación de un sistema
de coordenadas: "Ascensión recta - Declinación" en otro: "Al-
tura y Azimut" termino la clase de hoy. No sé si mis estimados
oyentes han podido seguir en un todo lo que acabo de explicar.
Comprendo que el tema que la Asociación Argentina "Amigos de la
Astronomía" me encomendó desarrollar habrá sido para muchos un
tanto árido, principalmente para los novicios, pero por otra parte,
entre los oyentes que han tenido la gentileza de asistir a la clase, habrá entendidos en la materia, para quienes el desarrollo del tema no ha ofrecido novedades.

Resulta difícil satisfacer en general y en forma de clase a todos los oyentes ya que es imposible saber de antemano cuáles de las nociones de una materia a disertarse, pueden ser aceptadas como conocidas y cuáles necesitan mayores explicaciones. Por otra parte, la Asociación Argentina “Amigos de la Astronomía” se ha ofrecido para publicar íntegramente mi tema en los dos próximos números de su Revista, lo que gustosamente he aceptado, en la creencia de que sirva de estímulo entre nuestros socios, teniendo los aficionados que no han podido asistir a la clase de hoy, ocasión de formarse una idea de todo lo que acabo de pronunciar y nosotros, al releer el artículo perfeccionarnos aún más en los conocimientos de la materia que nos ocupa. He dicho.
DESCUBRIMIENTO
DE UNA ESTRELLA VARIABLE

En el curso de mis observaciones de estrellas variables de perío-
dolargo, efectuadas en el Observatorio de La Plata, he podido con-
probar la variabilidad de otra estrella, vecina a una de las que acos-
tumbro observar. Se trata de la estrella que figura bajo el N° 128 de
la zona —47° de la Córdoba Durchmusterung, y su posición para
1900.0 es:
\[\alpha = 0^h 25^m 24^s; \delta = -47^\circ 0'5 \]

En el proemio del tomo correspondiente del catálogo citado se
da una lista de estrellas que en el curso de las observaciones mos-
traron indicios de variabilidad, pero dicha estrella no se halla in-
cluida allí.

La nueva variable está situada a escasamente 4' de distancia de
la de período largo 00:25:46 = T Phoenicis y es además una de sus es-
trellas de comparación figurando en la secuencia respectiva con la
letra h.

La secuencia fotográfica publicada en los Anales de Harvard,
tomo 47, pág. 6, le asigna la magnitud (fotográfica) 11.19 y los
residuos indicados de 0.0, +0.1, 0.0 y 0.0 entre el valor medio y los
individualmente obtenidos de las placas, muestran que estuvo apro-
ximadamente en el mismo brillo en las épocas de exposición de las
mismas.

La secuencia del tomo 63 de la misma colección (pág. 150) le
atribuye la magnitud 12.98 (promedio de las determinaciones visua-
les =12.86 y de las fotométricas =13.10). Vemos que la diferencia
de 0.24 entre ambas series de observaciones es un poco grande ya que
los residuos de las otras estrellas de la secuencia dan valores bastante
menores, salvo en un caso. Dichos residuos, expresados en el sentido
Visual—Fotométrico y en centésimos de magnitud, son los siguientes:
\[+1, +7, 0, +7, -3, +21, +4, 0, 0, -11. \]

Es de advertir que la gran diferencia entre las magnitudes da-
das por ambos tomos proviene más de una diferencia de la escala
adoptada que de un fuerte índice de color, el cual no parece existir
en la nueva variable.
En la bibliografía que he podido consultar no he hallado mención de esta estrella, ni como sospechosa de variabilidad, ni como variable confirmada. No figura en el "Katalog und Ephemeriden Veränderlicher Sterne für 1929" de Prager, el cual incluye hasta la "Benennungsliste Nº 25" de la Comisión de Estrellas Variables de la "Astronomische Gesellschaft". Tampoco se encuentra en la Lista Nº 26, la única publicada posteriormente.

A continuación doy el detalle de mis observaciones, las cuales muestran la variabilidad de la estrella h. Para que sirva de guía en las comparaciones efectuadas diré que las magnitudes de las otras estrellas son, según el tomo 63 de Havard, $d = 12.18$, $g = 12.84$, $h' = 13.19$, $l = 13.64$ y $h = 14.10$.

Observaciones

<table>
<thead>
<tr>
<th>Año</th>
<th>Mes</th>
<th>H. oficial</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1928</td>
<td>Junio</td>
<td>23 5h 30m</td>
<td>h evidentemente $< l$</td>
</tr>
<tr>
<td></td>
<td>Julio</td>
<td>14 1 50</td>
<td>h y l en sus brillos normales</td>
</tr>
<tr>
<td>1929</td>
<td>Enero</td>
<td>31 21 50</td>
<td>Comparé la variable T Phe. con h sin notar en ésta nada de anormal</td>
</tr>
<tr>
<td></td>
<td>Febrero</td>
<td>13 21 10</td>
<td>id.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23 20 10</td>
<td>id.</td>
</tr>
<tr>
<td></td>
<td>Julio</td>
<td>7 1 40</td>
<td>l 3 h 1 L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 3 0</td>
<td>h^1 7 l 5 h 2 k</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 23 45</td>
<td>d 7 h 3 h'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 23 55</td>
<td>g 1 h 2 h'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 0 10</td>
<td>d $> h > l$ Molesta la presencia de la Luna</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 0 5</td>
<td>Mucha luna y malas condiciones pero veo que está aproximadamente su brillo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21 0 5</td>
<td>d 6 h 2 h' 5 l; h seguramente no inferior a h'. Luna llena.</td>
</tr>
</tbody>
</table>

Las iniciales BC indican que el instrumento utilizado fue el Buscador de Cometas de 20 cm.; las EG que lo fue el Ecuatorial Gautier de 43 cm.

Las comparaciones se hicieron por el método de Argelander, significando la notación: l 3 h 1 L que de la estrella l a la h se estimaron 3 grados de luz y 1 grado de la h al límite de visibilidad del anteojo. El grado vale para mí (como lo he podido determinar de otras observaciones) poco menos de 0.1 de magnitud, pero su valor exacto para estas observaciones resultará de la reducción final.

De las observaciones se desprende que en 1928, junio 23 a las 5h 30m la estrella h era inferior a la l, cuando según la secuencia de-
bía ser 0.68 mag. mayor; que en 1929, julio 7 entre 1h 40m y 3h 0m, h era unos 0.3 a 0.4 mag. inferior a l ($h = 14.0$); que el mismo día a las 23h 50m, es decir, 21h más tarde, ya era mayor que h' y de magnitud 12.9 habiendo, por consiguiente, aumentado poco más de una magnitud en su brillo; que en las demás observaciones h tenía aproximadamente su brillo normal. Entre julio 7 y 16 me fue imposible conseguir observaciones a causa del tiempo y luego la Luna estaba demasiado crecida para permitir determinaciones precisas.

Si durante el curso de las observaciones efectuadas por los astrónomos de la sucursal del Observatorio de Harvard en Arequipa para determinar las magnitudes de la secuencia, o en las veces que ha sido utilizada como estrella de comparación por los observadores de variables, hubiese estado una magnitud más débil que su brillo normal, no habría escapado su descubrimiento y habría sido señalado. El hecho de que no lo ha sido es un indicio de que la nueva variable es del tipo irregular o, lo que es más probable, pertenezca al grupo de las variables a eclipse que, como se sabe, conservan en general su brillo constante para disminuir y luego aumentar con rapidez, como lo ha hecho la nuestra, durante el paso del compañero oscuro por delante de la estrella principal.

Se proseguirán las observaciones a fin de dilucidar esta cuestión.

Observatorio de La Plata.

Martin Dartayet.
motive de gran preocupación para los astrónomos. Así, por ejemplo, el 1º de enero de 1921 expresados en días julianos (1) es: (D. J.) = 2.422,691.

Después del día, es el año la unidad de tiempo más natural. Todas las labores agrícolas están tan estrechamente unidas a la sucesión de las estaciones, que el hombre ha debido, usarla como medida más sencilla mucho tiempo antes de haber comprendido sus causas astronómicas. Por su mayor duración, el año responde muy bien al fin de medir intervalos muy largos de tiempo.

El número de días que contiene el año es demasiado crecido para que se puedan contar con él cómodamente ciertos periodos, habiendo sido preciso introducir una nueva unidad intermedia entre el día y el año. Esta unidad la proporcionaron el movimiento y las fases de la Luna. Observando la reaparición de la luna nueva entre los rayos del Sol, que se repite a intervalos de unos 30 días, se encontró, para períodos de una duración media, una unidad de tiempo muy aproximada, el mes, y un interés duradero se unió a esta unidad, ya que sirvió para regir la sucesión de los ritos religiosos que se instituyeron para celebrar la reaparición de la Luna.

Si el mes lunar tuviese un número fijo de días, por ejemplo, 30, y el año exactamente 12 meses, el empleo de estos ciclos para medir el tiempo no hubiera ofrecido ninguna dificultad; pero el mes tiene algunas horas menos que 30 días, y el año 12 ½ meses lunares. El deseo de combinar estas unidades originó en el calendario antiguo una perturbación que dificultó su uso, y cuyo efecto ulterior todavía sufrimos hoy con la desigual duración de nuestros meses. Exponer aquí todos los recursos a que se acudió para salvar estos inconvenientes, sería tarea muy larga, y en estas páginas nos limitaremos a dar una breve idea de las reformas que hubo de sufrir el primitivo calendario.

El mes lunar o intervalo entre dos novilunios consecutivos tiene 29 ½ días. Para contar los meses, acomodándolos a la sucesión de las fases de la Luna, se admitió su duración alternando uno de 29 días con otro de 30. Pero, el período de 29 ½ días no es tampoco exacto; es en realidad un poco corto con relación al verdadero, que es tres cuartos de hora más largo. En el transcurso de tres años habría, por consiguiente, por acumulación de este exceso, un día de diferencia y sería necesario añadir un día a uno de los meses. Si se contara por meses lunares, el año, supuesto de 12 de

(1) Los días julianos ofrecen otra pequeña ventaja. Si se divide el número que expresa el día correspondiente a una fecha determinada, por 7, el día será un lunes si el resto es cero, martes si el resto es 1, etc.
estos meses, tendría 354 días o sea 11 días menos de su verdadera duración. Es de notar, sin embargo, que tanto entre los griegos como entre los romanos, estuvo en uso este año lunar y que es empleado hoy todavía por algunos mahometanos. Para completar los días que faltaban los romanos añadieron cada dos años un mes bisieto, denominado Mercedonius, entre el 23 y 24 de febrero del calendario de Numa, alterando su duración entre 22 y 23 días.

La irregularidad y la incomodidad que en los cómputos causaban los meses lunares, indudó a la mayor parte de los países civilizados antiguos a su abolición, ya que el único motivo de conservarlos estaba en los ritos religiosos que se acostumbraban celebrar en la luna nueva, y a los cuales los judíos y algunos otros pueblos orientales daban gran importancia.

Entre los egipcios encontramos el año de 12 meses de 30 días cada uno, con adición de 5 días complementarios, o sea en total 365 días. Como que la duración verdadera del año es unas seis horas mayor, el equinoccio se retrasaría, según este calendario, seis horas todos los años, y al cabo de 120 años ocurriría un mes (30) días más tarde. En el transcurso de 1460 años cada estación habría comenzado en cada uno de los doce meses para volver a empezar en la misma fecha que al principio de dicho período. A este período los egipcios lo denominaron período de Sothis, de Sirio (Sopt Soth), cuya ascensión helífaca (2), observaban con mucho interés. En realidad, la duración verdadera del período hubiera debido ser de unos 1500 años.

En el calendario de los griegos, la dificultad se solucionó en parte por la introducción del ciclo que descubrió Metón (en el siglo V antes de Jesucristo), y que lleva su nombre. Este ciclo consta de 19 años, durante los cuales las fases de la Luna se suceden 235 veces. El error es muy pequeño, como se deduce de los números siguientes que se apoyan en datos modernos:

235 lunaciones tienen 6939^d 16^h 31^m
19 años trópicos verdaderos......... 6939 14^v 27
19 años julianos de 365 1/4 días..... 6939 18 0

Si tomamos, por consiguiente, 235 meses lunares y los distribuimos en los 19 años, la duración media de estos años será suficientemente exacta para todos los usos civiles. Los años de cada ciclo se contaban desde 1 a 19; el número del año se llama número de oro.

(2) La ascensión helífaca de una estrella significaba entre los antiguos su primera reaparición en el cielo matutino después de haber salido de entre los rayos solares.
El número de oro (áureo número) está todavía en uso en el calendario eclesiástico para calcular la fecha del domingo de Pascua; la Pascua, con las fiestas que se relacionan con ella, es la única festividad religiosa que, en los países cristianos, depende del movimiento de la Luna. La Pascua cae en el primer domingo después de la luna llena del equinoccio de primavera, esto es, de la primera que ocurre después del 20 de marzo. Las fechas del plenilunio dependen del ciclo de Metón, y se repiten, por consiguiente, en los primeros días o muy cerca de ellos al cabo de 19 años.

Si anotamos la fecha en que ocurre la luna llena pascual, no volveremos a encontrarla el mismo día en los 19 años consecutivos; pero en el año 20º caerá en el mismo día que en el primer año o llevará solamente un día de diferencia, y a partir de aquí se repetirá la serie. El número de oro da así la manera de calcular, con exactitud suficiente para los fines religiosos, cuántos días después del equinoccio de primavera ocurre la Luna llena pascual. Para calcular el día que corresponde al domingo de Pascua (3) se requieren todavía otros datos: la denominada letra dominical (la letra que corresponde al primer domingo del año, si se designa el 1º de enero por la letra A, el 2 de enero por B, etc.) y la epacta, que da la edad de la Luna, en días, el 1º de enero.

Los cálculos de la Iglesia para determinar el domingo de Pascua se efectúan con tablas de la Luna muy antiguas, de manera que se puede llegar a encontrar una semana de error respecto a los plenilunios calculados con las tablas modernas.

La base para el cálculo del calendario que está actualmente en uso en los países cristianos es la reforma de Julio César. En su

(3) Gauss dio una fórmula muy sencilla y práctica para calcular la fecha de la fiesta de Pascua para cualquier año.

Designando el número del año por N y los restos de la división $\frac{N}{19}$ por a, $\frac{N}{4}$ por b, $\frac{N}{7}$ por c, $\frac{19a + x}{30}$ por d, $\frac{2b + 4c + 6d + y}{7}$ por e, se encuentra que el día de Pascua es el $(22 + d + e)$ de marzo o el $(d + e - 9)$ de abril.

En vez de x y e hay que poner los valores numéricos siguientes (para el calendario gregoriano):

<table>
<thead>
<tr>
<th>Año</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1583</td>
<td>1699</td>
<td>22</td>
</tr>
<tr>
<td>1700</td>
<td>1799</td>
<td>24</td>
</tr>
<tr>
<td>1800</td>
<td>1899</td>
<td>22</td>
</tr>
<tr>
<td>1900</td>
<td>2099</td>
<td>23</td>
</tr>
</tbody>
</table>

Además debe tenerse en cuenta que en caso de resultar el 26 de abril debe ponerse el 19 de abril, y en vez del 25 de abril solamente el 18 de abril, cuando para d se haya encontrado el valor 28 y $a > 10$. Para los años siguientes, el domingo de Pascua es:

- 1924, 20 de abril;
- 1925, 12 de abril;
- 1926, 4 de abril.
tiempo, el calendario romano había llegado a un estado de desorden, porque la duración nominal del año dependía en gran parte del capricho y de las órdenes arbitrarias del pontífice máximo. Entonces se sabía ya que la duración verdadera del año solar era de unos 365 1/4 días, y Julio César fijó la duración legal del año en 365 días, con la adición de un día cada cuatro años. La duración de los diferentes meses, tales como los conocemos ahora, fue fijada por los sucesores inmediatos de César.

El calendario Juliano permaneció invariable durante diez y seis siglos. Si la duración del año trópico fuese exactamente de 365 1/4 días, todavía continuaríamos empleándolo. Pero como el año solar es 11 1/4 minutos más corto, hace que en 128 años se haya contado un día de más. Por esta causa los equinoccios en el siglo XVI ocurrieron 11 ó 12 días antes de lo que indicaba el calendario, es decir, el 10 o el 9 de marzo en vez del 21. El objeto de la reforma gregoriana del calendario, ordenada a propuesta del italiano Lilio por el Papa Gregorio XIII, fue ponerlo de acuerdo con el calendario antiguo, o mejor dicho, con el de la época del concilio de Nicea. La reforma se refiere a dos puntos:

1. El 5 de octubre de 1582 del calendario Juliano se denominó el 15; se saltaron, por consiguiente, 10 días en la cuenta del tiempo, con lo cual los equinoccios volvieron a caer precisamente en el 21 de marzo y en el 23 de septiembre.

2. El último año de cada siglo, 1600, 1700, etc., no debía ser siempre, como ocurría en el calendario Juliano, año bisiesto, sino solamente cuando el número del siglo fuese divisible por 4. Así, mientras que 1600, 2000, 2400, etc., seguirán siendo años bisiestos con 366 días, 1700, 1800, 1900, 2100, etc., deberían ser años corrientes de 365 días.

Esta reforma fue adoptada muy pronto por los países católicos y más lentamente en los países protestantes (por ejemplo, en Inglaterra, en 1752). En los dominios de la Iglesia griega todavía se emplea en parte el calendario Juliano, en Rusia fue abolido en 1918 y en Rumanía en 1919. Como los años 1700, 1800 y 1900 no fueron, según el nuevo calendario, años bisiestos, el calendario Juliano está ahora 13 días atrasado respecto al nuestro.

La duración media del año gregoriano es de 365 días 5 horas 49 minutos y 12 segundos, la del año trópico 365 días 5 horas 48 minutos y 46 segundos. El primero es, pues, 26 segundos más largo, error que solamente al cabo de más de 3000 años llegará a completar un día, por cuyo motivo no tiene importancia práctica.

S. Newcomb y R. Engelmann: "Astronomía Popular."
MODO DE FABRICAR UN ANTEOJO ECONOMICO

El conocimiento y familiarización de los astros, así como el de las constelaciones, debe ser, para los aficionados que se inician en la observación estelar, previo al uso de aparatos ópticos.

Suponiendo al novel observador en dichas condiciones y con el deseo de observar en detalle y ver más aún y no poseyendo los medios necesarios para ello, podemos, a modo de iniciación modesta, para los que no están sobrados de recursos, o para aquellos que, por placer, deseen fabricar sus propios instrumentos, indicar la siguiente solución: adquirir un lente convexo en cualquier casa de óptica (valor un peso, más o menos), de unos dos metros de distancia focal (lo que corresponde a 0,5 dioptrías, que es la unidad usada por los ópticos). Montemos esta lente como objetivo en el extremo de un tubo que puede ser de cartón, lata o zinc y que tenga unos cinco centímetros menos de largo que la distancia focal de la lente. En el extremo libre del tubo se pone otro que entre en el primero suavemente y de unos veinte centímetros de largo; este será el tubo portá ocular. El ocular se puede hacer con una lente de cuatro centímetros (23 dioptrías) de foco; es conveniente tener también otros oculares, uno de tres centímetros (33 dioptrías) y uno de dos centímetros (50 dioptrías). Los oculares no deben utilizarse en toda su abertura, sino poniendo un disco opaco con un agujero en el centro, de unos 4 milímetros de diámetro en el lado externo (ver figura). Luego el tubo se ennegrece por dentro con barniz negro diluido, para evitar reflexiones internas; tendremos así un antejo que no podrá rivalizar por cierto con el de Yerkes, pero que nos permitirá distinguir las montañas de la Luna, algunos de los satélites de Júpiter, etc. Naturalmente, tendrá defectos: los objetos muy luminosos aparecerán con una aureola de colores (aberración cromática), y es precisamente para disminuirla que tomamos una distancia focal tan grande; en cambio, el costo no alcanzará la modesta suma de diez pesos.

Si tenemos ambiciones mayores, una solución excelente será adquirir un catalejo (los hay de ocasión a precio razonable) y transformarlo en antejo astronómico. Como el objetivo está corregido, la calidad de las imágenes es muy superior a la que se obtiene.
en el caso anterior. Elegiremos un objetivo lo más grande posible (no menor de cuatro centímetros), y recordemos que lo único importante es el objetivo. La transformación es muy sencilla: basta quitar el tubo más delgado que contiene cuatro lentes, lo que constituye el ocular terrestre, y utilizarlo en caso necesario; en su lugar se pondrá un ocular de microscopio de una distancia focal de 1,5 centímetros (precio, unos seis pesos); se puede tener un ocular más poderoso de un centímetro de foco (quince pesos, más o menos). El antejo usado así debe ser acortado, lo que se consigue con sólo introducir los diferentes tubos unos dentro de otros hasta conseguir ver claramente un objeto lejano (no olvidar que el antejo astronómico invierte las imágenes, lo que no tiene inconveniente en la observación de los astros).

Si queremos saber cuál es el aumento que usamos, nos bastará dividir la distancia focal del objetivo, que se mide fácilmente to-
mando la distancia del lente a una hoja de papel, cuando se obtiene una imagen nítida de un objeto alejado, por la distancia focal del ocular, ya conocida. (Si tomamos un objetivo de cincuenta centímetros de foco y un ocular de 1,5 de distancia focal, el aumento será de $\frac{50}{1,5} = 33,3$; es decir, que un objeto cualquiera es aumentado en su altura, o anchura aparente 33,3 veces; si usamos un ocular de un centímetro de foco, el aumento será de cincuenta veces). Con un anteojo así, distinguiremos además de lo ya dicho: Saturno con su anillo, las fases de Venus, detalles de la Luna y otros espectáculos interesantes del mundo estelar.

Tenemos, pues, el anteojo, pero eso no basta: es indispensable disponerlo sobre un pie que permita su uso cómodo. El mejor anteojo con un pie inestable, será poco menos que inútil. No entraré en la descripción de un pie ecuatorial, no por ser imposible ni siquiera difícil su construcción, sino porque es necesario primero practicar con pie común o azimutal, es decir, con un eje vertical y otro horizontal: éste se puede construir de diferentes maneras, pero buscando siempre la estabilidad máxima; las figuras indican una manera de construirlo que da buenos resultados en la práctica; también se puede utilizar, reforzándolo, un pie de máquina fotográfica o de un teodolito.

Espero que en otra ocasión podré explicar cómo es posible la construcción de un buen pie ecuatorial, que pueda proveerse hasta de movimientos lentos y de relojería.

Buenos Aires 1929.

Ulises Bergara.
POSICION DE LAS CONSTELACIONES PARA EL HORIZONTE DE BUENOS AIRES

El mapa del cielo Nº 3 representa la bóveda celeste para el horizonte de Buenos Aires en las siguientes horas y fechas:
20 de agosto a las 22 horas,
5 de setiembre a 21
20 de octubre a 20
5 de octubre a 19

y contiene todas las estrellas visibles a las horas indicadas hasta la magnitud 4,50 según la escala al margen del mapa. Como base de las magnitudes se han tomado los datos publicados en Harvard Revised Photometry, tomo 50. Las estrellas variables se han marcado con el signo correspondiente al término medio entre el máximo y mínimo de brillo y para distinguirlas de las demás, se ha dejado en blanco el interior del signo. Estrellas vecinas y dobles figuran con el brillo del conjunto, las primeras marcadas con dos rayitas, las últimas con una rayita. Estrellas vecinas se han denominado aquellas cercanas que pueden separarse ya a simple vista, las cuales, sin embargo, por exigencias del dibujo, han debido dibujarse en el mapa como una estrella. Se han marcado como estrellas dobles únicamente aquellas que reúnan las siguientes condiciones:

1) Magnitud combinada hasta 4,50.
2) de la compañera mayor de 10.
3) Diferencia de magnitudes de los componentes menor de 7.
4) Separación entre 1" y 35" para pares con poca diferencia o iguales en brillo.
 " 2" y 35" para pares con mucha diferencia de brillo.

Referente a estrellas variables y dobles se han tomado los datos más modernos, revisando los catálogos aparecidos últimamente y otras fuentes auténticas, como así también los suministrados por el señor Martín Dartayet, calculista del Observatorio de La Plata. El mencionado criterio sobre estrellas dobles lo estableció el señor Bernardó Dawson, astrónomo del citado instituto.
La "Vía Láctea" se ha marcado en el mapa con una línea roja punteada, denominada "Ecuador galáctico", extendiéndose la Vía Láctea a ambos lados. Además se han marcado con "Nubea Major" y "Nub. minor" las nubes conocidas bajo el nombre de "Magallanes".

Se han incluido de los numerosos cúmulos únicamente los más notables en nuestro hemisferio: θ Centauri, θ Tucanae y Scorpius que se distinguen por un signo especial, formado de puntitos.

En el borde del mapa se notan varios círculos de diferente diámetro. El más interior corresponde al horizonte de Buenos Aires con una distancia cenital de 90°. A causa de la refracción atmosférica el eje visual abarca una extensión algo mayor, 90° 36,6' — en condiciones normales, por cuyo motivo se ha marcado también el horizonte visible, es decir, tomando en cuenta la refracción. Si bien, en la escala reducida del mapa es poca la diferencia, se nota por la continuación de los círculos horarios y de declinación hasta el horizonte visible que las salidas de los astros se adelantan, las puestas se atrasan a causa de la refracción, en menor grado los situados cerca del ecuador, en mayor grado los de mucha declinación boreal o austral. El círculo con mayor radio que se ve en el borde extremo del mapa, es el círculo de 6½° bajo el horizonte, o sea el del crepúsculo, y continuando los círculos horarios cerca del ecuador se notará que la duración del crepúsculo es de m. o. m. media hora. El "Ecuador celeste" que divide el hemisferio en una parte austral (arriba) y otra boreal (abajo), y el círculo horario de 6 horas, o sea de Ascensión recta de 2 horas (al Este) y de 14 horas (al Oeste) para el momento dado, están marcados con líneas más gruesas. Otro círculo punteado en forma de óvalo aparece en la parte superior del mapa con puntos de intersección en el polo Sud y cenit, es el círculo de mayor digresión o clíngacion de astros con más de 34½° de declinación. Una estrella situada en un punto de este círculo tiene ahí en este momento su mayor distancia angular del meridiano.

La esfera se ha dividido en cuatro partes iguales representando la línea divisoria vertical, el meridiano — dirección Norte — Sud — y la horizontal, el primer vertical — dirección Este — Oeste. Otras subdivisiones marcan las direcciones NE, NW, SE, SW. Para determinar más exactamente la posición de un astro en cuanto al azimut, se han hecho en el círculo borde subdivisiones de 10, 5, 1 y medio grado con líneas cortitas, a cuyo efecto se puede leer el azimut de un astro perfectamente a medio grado de exactitud. En la escala al margen del mapa se puede, con la misma facilidad, determinar la altura de un astro, midiendo la distancia entre el cenit y el astro, comparándola con la escala, lo que da la altura de la estrella en el momento dado hasta medio grado de exacti-
tud. Para astros cerca del horizonte se puede determinar la altura *verdadera* con la escala principal, dando la división de abajo la altura *aparente*, o sea la altura aumentada por la refracción.

Las posiciones de las estrellas corresponden al equinoccio de 1930, 0, o sea al principio del año 1930, sirviendo, por consiguiente, el mapa para el mes y hora correspondiente para muchos años venideros, dado que las variaciones de las posiciones de los astros a causa de la precesión no pueden apreciarse en la escala del mapa en decenas de años.

Comparando el mapa N° 3 con el anterior, se nota que de las constelaciones situadas al Oeste han desaparecido bajo el horizonte totalmente las siguientes: Puppis, Vela, Antílfa, Pyxis, Crater, Corvus, Sextans, Coma, Canes venatici y parcialmente Hércules, Corona Borealis, Bootes, Virgo, Hydra. Entre las estrellas hasta la magnitud 2 ya no son visibles ζ Carinae (Canopus), α Virginis (Spica) y α Bootis (Arcturo). Las siguientes nuevas constelaciones en dirección Este han aparecido parcial o totalmente: Cygnus, Lacerta, Pegasus, Andromeda, Piscis, Cetus, Sculptor, Fornax. Estas regiones no contienen gran cantidad de estrellas en comparación de otras, y hay únicamente un astro con brillo mayor de 2 magnitud: α Cygni (Deneb), situado a poca altura.

Es interesante comparar la cantidad de estrellas visibles hasta cierta magnitud en diversos meses. De un total de 823 estrellas hasta la magnitud 4,50 son visibles 430, contra 447 que figuran en el mapa anterior, es decir, 17 estrellas menos. De un total de 40 hasta la magnitud 2 son visibles solamente 16 contra 19 del mapa N° 2. Más desfavorable sale la comparación del número de estrellas hasta la magnitud 2,50 visibles a esta hora, o sean 31, con el total de toda la esfera (76), de lo que resulta que únicamente el 40 % del total hasta la magnitud 2,50 es visible. Las regiones del cielo que se representan a la hora indicada no son, pues, tan ricas de estrellas como en meses anteriores.

En el momento dado, el tiempo sideral es de 20 horas, es decir, todos los astros cuya ascensión recta es de 20 horas, pasan por el meridiano en dirección Norte, o en el caso que la declinación austral de la estrella pase de 34º 20’ en dirección Sud entre el cenit y el polo, paso superior por el meridiano. En la última dirección entre el polo y el horizonte se encuentran todas aquellas en su paso inferior, cuya ascensión recta es de 8 horas.

Mirando primeramente al Sud, y sucesivamente al Este, Norte, Oeste, se ven las constelaciones que se detallan más adelante, habiéndose marcado ellas en el mapa con la abreviatura usual de tres letras. (Ver número III, págs. 122 y 123 de la Revista).
EN DIRECCION SUD.
CARINA, VOLANS —
Cerca del horizonte en su paso inferior.
MENSA, CHAMAeleON —
A más altura en su paso inferior.
OCTANS, APUS —
Ocupando la región alrededor del polo Sud.

ENTRE EL SUD Y EL ESTE
PICTOR, ERIDANUS, CAELUM, HOROLOGIUM —
Cerca del horizonte, saliendo.
DORADO, RETICULUM, HYDRUS, PHOENIX, TUCANA —
A más altura.

EN DIRECCION ESTE
CETUS Y FORNAX —
Cerca del horizonte, saliendo.
AQUARIUS, SCULPTOR —
A más altura.

ENTRE EL NORTE Y EL ESTE
LACERTA, ANDROMEDA —
Cerca del horizonte, saliendo.
PEGASUS, PISCIS —
A más altura.

EN EL NORTE, CERCA DEL MERIDIANO
EN SU PASO SUPERIOR
LYRA, CYGNUS —
Cerca del horizonte.
VULPECULA, SAGITTA, DELPHINUS, EQUULEUS, AQUILA —
A más altura.

ENTRE EL NORTE Y OESTE
BOOTES, CORONA BOREALIS, HERCULES, SERPENS —
Cerca del horizonte, poniéndose.
OPHIUCHUS, SERPENS, SCUTUM —
A más altura.
EN DIRECCIÓN OESTE

VIRGO:
Cerca del horizonte, poniéndose.

LIBRA, SCORPIUS —
A más altura.

ENTRE EL SUD Y OESTE

CENTAURUS —
Cerca del horizonte, ocupando una gran región hasta regular altura.

HYDRUS —
Al lado de Centaurus.

CIRCINUS, LUPUS, TRIANGULUM AUSTRALE, NORMA, ARA —
A más altura, luego Musca, Crux.

ALREDEDOR DEL CENIT

SAGITTARIUS, CAPRICORNUS, MICROSCOPIUM, PISCIS AUSTRALIS,
GRUIS, INDUS, PAVO, TELESCOPIUM, CORONA AUSTRALIS —

El siguiente cuadro contiene todas las estrellas visibles a la hora indicada, cuya magnitud es mayor de 2, con indicación del nombre propio, ascensión recta, declinación, altura, azimut y ángulo horario, con cuyos datos es fácil orientarse comparando la bóveda celeste con el mapa. Se nota que la mayoría de ellas se encuentran en el cuadrante entre el Sud y Oeste. Cercas del meridiano marca la dirección Norte α Aquilae (Altair), la dirección Sud ε y β Carinae, cerca del primer vertical α Piscis Australis (Fomalhaut) la dirección Este, α Scorpii (Antarès), la dirección Oeste.

Referente a la última columna "Angulo horario", es de observar que ángulos negativos corresponden al Este, positivos al Oeste del meridiano. La relación entre el ángulo horario, la ascensión recta y el tiempo sideral es sencillo: Ascensión recta + Ángulo horario = Tiempo sideral, de manera que en el cuadro la suma de las columnas 4 y 8 corresponde siempre al tiempo sideral del momento dado, o sean a las 20 horas.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EN EL NORTE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α Lirae</td>
<td>Vega</td>
<td>0,14</td>
<td>18h 35m</td>
<td>$+39^\circ$</td>
<td>15$^\circ$</td>
<td>N 17o W</td>
<td>+ 1h 25m</td>
</tr>
<tr>
<td>α Aquilae</td>
<td>Altair</td>
<td>0,89</td>
<td>19 47</td>
<td>$+9$</td>
<td>47</td>
<td>N 5 W</td>
<td>+ 0 23</td>
</tr>
<tr>
<td>α Cygni</td>
<td>Deneb</td>
<td>1,33</td>
<td>20 39</td>
<td>$+45$</td>
<td>10</td>
<td>N 7 E</td>
<td>- 0 29</td>
</tr>
<tr>
<td>EN EL ESTE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α Piscis austr.</td>
<td>Fomalhaut</td>
<td>1,29</td>
<td>22 54</td>
<td>-30</td>
<td>53</td>
<td>E 6 S</td>
<td>- 2 54</td>
</tr>
<tr>
<td>EN EL SUD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α Eridani</td>
<td>Achenamar</td>
<td>0,60</td>
<td>1 35</td>
<td>-57</td>
<td>32</td>
<td>S 38 E</td>
<td>- 5 25</td>
</tr>
<tr>
<td>ε Carinae</td>
<td>—</td>
<td>1,74</td>
<td>8 21</td>
<td>-59</td>
<td>4</td>
<td>S 3 W</td>
<td>+ 11 39</td>
</tr>
<tr>
<td>β · · ·</td>
<td>—</td>
<td>1,80</td>
<td>9 12</td>
<td>-60</td>
<td>15</td>
<td>S 7 W</td>
<td>+ 10 48</td>
</tr>
<tr>
<td>α Crucis</td>
<td>—</td>
<td>1,02</td>
<td>12 23</td>
<td>-62</td>
<td>20</td>
<td>S 27 W</td>
<td>+ 7 37</td>
</tr>
<tr>
<td>β · · ·</td>
<td>—</td>
<td>1,50</td>
<td>12 43</td>
<td>-59</td>
<td>20</td>
<td>S 31 W</td>
<td>+ 7 17</td>
</tr>
<tr>
<td>γ</td>
<td>—</td>
<td>1,61</td>
<td>12 27</td>
<td>-56</td>
<td>17</td>
<td>S 32 W</td>
<td>+ 7 33</td>
</tr>
<tr>
<td>β Centauri</td>
<td>—</td>
<td>0,86</td>
<td>13 59</td>
<td>-60</td>
<td>29</td>
<td>S 35 W</td>
<td>+ 6 01</td>
</tr>
<tr>
<td>α · · ·</td>
<td>—</td>
<td>0,64</td>
<td>14 35</td>
<td>-61</td>
<td>33</td>
<td>S 36 W</td>
<td>+ 5 25</td>
</tr>
<tr>
<td>α Triang. austr.</td>
<td>—</td>
<td>1,88</td>
<td>16 41</td>
<td>-69</td>
<td>45</td>
<td>S 24 W</td>
<td>+ 3 19</td>
</tr>
<tr>
<td>EN EL OESTE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α Scorpii</td>
<td>Antares</td>
<td>1,22</td>
<td>16 25</td>
<td>-26</td>
<td>43</td>
<td>W 5 S</td>
<td>+ 3 35</td>
</tr>
<tr>
<td>λ · · ·</td>
<td>Lefath</td>
<td>1,71</td>
<td>17 29</td>
<td>-37</td>
<td>59</td>
<td>W 16 S</td>
<td>+ 2 31</td>
</tr>
<tr>
<td>ε Sagitarii</td>
<td>—</td>
<td>1,95</td>
<td>18 19</td>
<td>-34</td>
<td>69</td>
<td>W 8 S</td>
<td>+ 1 41</td>
</tr>
</tbody>
</table>

Las constelaciones más notables son las siguientes:

Scorpius en el Oeste, formado por una cadena principiando con β, δ, κ, seguido por σ, α (Antares) τ; luego por ε, μ, ζ, η, concluyendo en forma de S con δ, ε, λ, μ y ν.

α Centauri (doble) y β en el Sudoeste, a regular altura. En la prolongación de estas queda la famosa Cruz del Sud (Crux) con α, β, γ, δ, la última más débil.

Triangulum australe en dirección Sud, el triángulo formado por α, β, γ.

α Piscis australis (Fomalhaut), estrella brillante y α, β, γ Cruci están situadas de manera que forman una especie de barrilete.

Pegasus. A escasa altura en dirección Noreste se distingue ya el notable rectángulo formado por α Pegasi (Markab) en la
punta de arriba, β (Scheat), γ (Algenib) a la izquierda y derecha y α Andromedae (Sirrah) en la punta de abajo.

En el siguiente cuadro se detallan las posiciones de los cúmulos ω Centauri, ξ Tucanae, N.G.C. 6775 (Scorpius), y de las Nubes de Magallanes.

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Asc. Recta</th>
<th>Declin.</th>
<th>Altura</th>
<th>Azimut</th>
<th>Angulo horario</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω Centauri</td>
<td>13(^{h}) 23(^{m})</td>
<td>-47°</td>
<td>19°</td>
<td>Sudoeste</td>
<td>+ 6(^{h}) 37(^{m})</td>
</tr>
<tr>
<td>N.G.C. 6775</td>
<td>17 49</td>
<td>35</td>
<td>63</td>
<td>W 12° S</td>
<td>+ 2 11</td>
</tr>
<tr>
<td>ξ Tucanae</td>
<td>0 21</td>
<td>72</td>
<td>40</td>
<td>S 21 E</td>
<td>- 4 21</td>
</tr>
<tr>
<td>Nub. major</td>
<td>0 50</td>
<td>73</td>
<td>38</td>
<td>S 21 E</td>
<td>- 4 50</td>
</tr>
<tr>
<td>Nub. minor</td>
<td>5 30</td>
<td>70</td>
<td>18</td>
<td>S 12 E</td>
<td>- 9 30</td>
</tr>
</tbody>
</table>

La "Eclíptica". Está marcada en el mapa por una línea punteada, denominada "Eclíptica". Empieza en el horizonte en dirección Este 12° al Norte en la constelación Piscis, siguiendo por Aquarius, Capricornus, alcanzando en dirección Norte 12° Oeste la mayor altura con 76°, bajando por Sagittarius, Ophiuchus, Libra, llegando en la constelación Virgo al horizonte en dirección Oeste 12° al Sud. El polo Sud de la eclíptica, situado en ascensión recta 6 horas, declinación 66° 33' Sud, está marcado con una cruz (+).

La "Vía Láctea". Se extiende desde el horizonte en dirección Norte 15° al Este, pasando por Cygnus, Vulpecula, Sagitta, Aquila, Scutum, Sagittarius, Scorpion, Lupus, Centaurus, Crux, terminando en el horizonte en la constelación Carina en dirección Sud 17° al Oeste. Está situada principalmente en la parte Oeste del hemisferio.

Alfredo Völsch.
PROBLEMAS
MATEMÁTICO - ASTRONÓMICOS

Solución del problema N.° 4 (N.° IV de la Revista, pag. 191)

El cálculo de la altura de un astro en el meridiano es una simple resta. Llamando la latitud geográfica de un lugar \(\varphi \), la declinación del astro \(\delta \), su altura sobre el horizonte \(h \), la distancia cenital \(z \), de manera que \(z = 90 - h \), tenemos:

para el paso superior: \(z = \varphi - \delta \) y \(90^\circ - h = \varphi - \delta \)

\[
\begin{align*}
 h &= 90^\circ - (\varphi - \delta) \\
 &< \text{para el paso inferior: } z = 180^\circ - (\varphi + \delta) \text{ y } h = (\varphi + \delta) - 90^\circ
\end{align*}
\]

Por consiguiente, la altura del Sol en Spitzberg en el día indicado es de \(32^\circ 30' \) al mediodía y de \(13^\circ 18' \) a la medianoche.

Para solucionar la segunda parte del problema, siendo la latitud austral, invertimos el signo de \(\delta \) en la fórmula para el paso superior, obteniendo:

\[
\varphi = 90 - h - \delta,
\]

y con los valores dados, obtenemos:

\[
\varphi = -34^\circ 36',
\]

es decir, el día 9 de junio con una declinación de \(22^\circ 54' \) boreal, el Sol está en Buenos Aires a mediodía a la misma altura de \(32^\circ 30' \) como en Spitzberg en su paso superior. La solución de la tercera parte del problema necesita un cálculo matemático, resolviendo el ángulo horario para una latitud \(-34^\circ 36' \), declinación \(+22^\circ 54' \) y altura \(13^\circ 18' \) dada, pero se puede determinar el ángulo horario gráficamente con suficiente exactitud, sirviéndose del mapa del cielo, publicado en la Revista.

Con el radio que corresponde a la altura dada de \(13^\circ 18' \), medido en la escala del mapa, o sea la distancia entre el principio de la escala (marcado con cenit) y la lectura de \(13,3^\circ \), se describe un círculo alrededor del cenit del mapa que se cruzará con el círculo de declinación de \(+22,9^\circ \) en dos determinados puntos. El último círculo situado casi a igual distancia entre \(+20^\circ \) y \(+25^\circ \) de declinación, se dibujará con lápiz en el mapa. Los puntos de intersección mencionados corresponden a ciertos ángulos de ascensión rec-
ta u horarios, cuyos valores se determinarán según la distancia entre dos próximos. De esta manera se verá que a la altura y declinación dada corresponden los círculos de ascensión recta de $16^h\ 30^m$ y $23^h\ 30^m$, y siendo la ascensión recta para el paso del meridiano, o sea la hora sideral que corresponde al mapa de 20 horas, resulta por una simple suma y resta, que los ángulos horarios buscados son: $-\ 3^h\ 30^m$ y $+\ 3^h\ 30^m$, respectivamente, es decir, el Sol tiene en Buenos Aires en la fecha dada a las $8^h\ 30^m$ y $15^h\ 30^m$ la misma altura como en Spitzberg el mismo día en su paso inferior. Los valores exactos son: $8^h\ 26^m$ y $15^h\ 34^m$.

Nuevo Problema N.º 5

Determinar de la misma manera como se indica en la solución del problema N.º 4 con el mapa publicado en la Revista el siguiente problema:

¿Cuando sale y se pone el Sol en Buenos Aires en el verano e invierno tomando en cuenta una declinación de $23^{1/2}_o$ austral y boreal, respectivamente?

¿En qué azimut sale y se pone el Sol en el verano e invierno?

¿A qué hora está el sol en el verano con una declinación de $23^{1}/_2_o$ en el Este y Oeste, y a qué altura?

Solución: I, 240

A. V.
BOSQUEJOS BIOGRÁFICOS

GRIEGOS Y ALEJANDRINOS

Thales (640-560 a. J. C.), de Mileto; uno de los “siete sabios de Grecia”, fundador de la escuela Jónica. Dícese que fué, entre los griegos, el primero que predijo un eclipse de Sol (585).

Pitágoras (580-500 a. J. C.), de Samos; fundó en Kroton una escuela filosófica (escuela de los pitagóricos). El principio fundamental de su sistema cosmológico es la idea de la medida y de la armonía.

Philo Iao (segunda mitad del siglo V a. J. C.), de la Italia meridional; después en Tebas; pitagórico. Célebre por su sistema universal del fuego central y de la antitiera.

Meton (440 a. J. C.), matemático de Atenas. Ordena el calendario griego por medio de su “ciclo” de 19 años. Kalippus lo corrigió en el siglo IV a. J. C.

Platón (427-347 a. J. C.), de distinguido linaje ateniense; en su juventud fué discípulo de Sócrates. Habiendo conocido en la gran Grecia las ideas de Pitágoras, funda, al volver a su ciudad natal, la “Academia”. El “Timás” está dedicado especialmente a la Naturaleza; su sistema de enseñanza es puramente teológico, fundado en el principio del bien.

Euclides (hacia 408-355 a. J. C.), de Knidos, discípulo de Platón; funda primero en Kyzikos y después en Atenas una escuela, luego de una permanencia de 16 meses en Egipto. Los últimos años de su vida habitó en Knidos. Fué preferentemente matemático, siendo también un celoso observador del cielo. Es autor de un sistema con el que explica los movimientos planetarios por medio de esferas concéntricas.

Aristotles (384-322 a. J. C.), de Estagira. Desde los 17 años fué discípulo de Platón, hasta la muerte de éste; después pasó algún tiempo en Mysia; en el año 343 fué llamado por Filipo de Macedonia para la educación del joven Alejandro. Durante las guerras de éste, enseñaba en el Liceo de Atenas (escuela de los pe-
Tolomeo, traduciéndolos al árabe durante su reinado; muchos astrónomos trabajaron en el observatorio de Schammásija, construido a la puerta de Bagdad; bajo su dirección se determinó la longitud de un grado en la llanura de Singár, entre el Eufrates y el Tigris.

ALBATEGNIUS o Al-Battání (el hombre de Battân, lugar de Harran; 792-929), vivió y observó en Ar-Rappa, en el alto valle del Eufrates; murió en 929 al regresar de Bagdad. Pasa por ser el más grande de los astrónomos árabes. Celoso observador y hábil matemático, corrige como tal los métodos trigonométricos. Determina nuevamente los elementos de la órbita del Sol y la precesión. C. A. Nallino ha publicado sus tablas astronómicas con el título de “Opus astronomicum” (Milán 1899 a 1907).

ABÛ'L WEFÄ' (padre de la honradez; 940-998), de Bûzgân, en el norte de Persia, uno de los primeros matemáticos árabes. Escribió, además de diferentes tratados sobre matemáticas, una astronomía llamada completa o Almagest; Carra de Vaux publicó algunos trozos traducidos al francés en el “Journal Asiatique” (1892). Abû'l Wefâ' cultivó en especial la trigonometría.

IBN JÛNIS (910-1009), de una familia de literatos de El Cairo, fue astrónomo de la corte del califa Al-Hâkim, quien le hizo construir un observatorio muy importante, en el cual trabajó Ibn Júnis hasta su muerte, en 1009. Sus tablas astronómicas las denominó, en honor de su protector, tablas Hâkimítiás, y constituyen la obra más importante de la Astronomía árabe, siendo a la vez una especie de historia de la astronomía. C. Schoy, de Essen, se ocupa en la publicación alemana de algunas partes de esta obra. Ibn Júnis perfeccionó especialmente el gnomón y demostró que la sombra arrojada por éste daba la altura del borde superior del Sol y no la del centro del mismo.

Las tablas que contienen sus observaciones y las de sus colegas, comprenden tablas de los planetas y un catálogo de estrellas.

ALFONSO X (1223-1284), “el Sabio”, rey de Castilla; hombre de ideas amplias; aficionado y protector de la Astronomía, que
en su tiempo y país lleva aun un carácter árabe; más tarde es acusado de herejía y destronado. Se le deben las Tablas alfonsinas.

ULÚG-BEG (el gran príncipe; 1394-1449), príncipe de los tártaros. Fomentó la Astronomía, como Al-Má'mún y Alfonso, también fue un buen observador. Construyó en Samarkanda un observatorio con aparatos de dimensiones gigantescas. Observó de nuevo y con más exactitud la mayor parte de las estrellas del Catálogo de Tolomeo, en vista de que la comparación con el catálogo de estrellas de As-Sufi (903-986, publicado en 1874 por Schjellerup), había demostrado la existencia de frecuentes errores.

DE COPERNICO A KEPLER

PURBACH o Peuerbach, Jorge (1423-1461), de Puerbach, norte de Austria; discípulo de Johann von Gmunde en la universidad de Viena, estudió después en Roma, Ferrara y otros sitios; desde 1450, aproximadamente, sucede a su maestro en Viena. Matemático sagaz y literato notable. Empieza a escribir un "Epítome" del Almagesto, que fue terminado después por Regiomontano, y publica "Theoricæ novae planetarum", reeditado frecuentemente.

REGIOMONTANO (1436-1476), en realidad Johann Muller, de Konigsberg en Franconia. Desde muy joven estudió en Viena, teniendo por maestro y amigo a Purbach. A indicación del cardenal Bessarion traduce con su maestro el Almagesto. Después de la muerte de Purbach (1461), Regiomontano va a Italia con Bessarion, donde adquiere y copia manuscritos griegos y realiza numerosas observaciones astronómicas.

En 1468 es nombrado archivero de los manuscritos griegos del rey de Hungría Matías Corvino. En 1471 pasa a Nuremberg, en donde, ayudado por Bernhard Walter, monta un taller, observatorio e imprenta. Entre varias observaciones realizadas están las del cometa de 1472, que sirvieron para que Halley pudiese calcular su órbita. De su imprenta salieron las célebres cefemerides con las posiciones del Sol, la Luna y los planetas y algunos datos sobre los eclipses. A fines de 1475 Regiomontano vuelve a Roma, llamado por Sixto IV, para llevar a efecto la reforma del calendario, y muere en aquella ciudad en 1476. Según el testimonio de Pablo Jovius, Regiomontano fue nombrado obispo de Ratisbona por Sixto IV. Después de ocurrida su muerte aparecen algunos escritos suyos, entre ellos el "Epítome" del Almagesto en 1496, y su trigonometría, en 1533.
COPTEMICO. Nicolás, traducción de su verdadero nombre Nicolas Koppernigk (19 de febrero de 1473 a 24 de mayo de 1543), hijo de un gran comerciante de origen alemán, quien había emigrado de Cracovia hacia Thorn, en donde se casó con la hermana del que después fue obispo de Ermland, Lucas Watzelrode. Después de la muerte de su padre, fue recogido, niño todavía, por su tío. En 1491 aparece matriculado en Cracovia, en donde muy probablemente se dedicó ya a la Astronomía, con Brudzewski. Pasó a Italia en 1496 para continuar sus estudios, haciéndose inscribir en Bolonia en el álbum de la Natio Germanorum. Allí estudió Derecho y griego, y con Novara estudió Astronomía. Copérnico estuvo cuatro años en Bolonia. En este intervalo fue nombrado canónico de Frauenburg. En 1500 dió conferencias sobre Astronomía en Roma. Después de una corta estancia en su patria estudió en 1501-1503 Derecho y Medicina en Padua, obteniendo en 1503, en Ferrara, el título de doctor en Derecho canónico. Desde 1506 hasta 1512 fue médico de cámara de su tío Watzelrode, en Heilsberg. Después de ocurrida la muerte de éste en 1512, Copérnico se trasladó a Frauenburg, de donde fue canónico hasta el fin de su vida. Su estancia en Frauenburg sufrío algunas interrupciones, pues en 1516-1519 y en 1520-1521 desempeñó el cargo de "Administrador" de Allenstein. En 1523, mientras estuvo vacante la sede episcopal, fue administrador general de Ermland. Copérnico fue consultado por el concilio de Leetrán (1514) sobre la reforma del calendario. Su contestación fue que la duración del año no era conocida con suficiente exactitud, pero que él estaba estudiando este asunto. Setenta años después, sus determinaciones sirvieron de fundamento para la reforma gregoriana. Copérnico concibió en 1506 su sistema heliocéntrico; el resto de su vida lo dedicó al desarrollo del mismo. Ya antes de 1512 escribió su teoría del sistema solar en el "Comentariolus" propagada en forma manuscrita; de este tratado se volvieron a encontrar copias en el siglo xix. Copérnico se opuso durante mucho tiempo a la publicación de su obra magna, pero permitió en 1539 a Joachim Rheticus, quien fue desde Wittenberg a reunirse con él, la impresión de una "Narratio prima". Finalmente, Rheticus obtuvo, por la influencia del obispo Giese, de Kulm, el manuscrito completo, de cuya impresión se encargó Osiander, de Nuremberg. Copérnico sólo pudo ver el primer ejemplar de su obra "De revolutionibus" en su lecho de muerte (1543), sin llegar a ver que su sistema solar se presentaba al público como hipotético, por haberse introducido una corrección en el título y un prólogo de Osiander.
APIANO Pedro, en realidad Bienewitz (1495-1552), de Leiszg; Sajonia; estudió en Leipzig y Viena; en 1527 fue nombrado profesor de matemáticas en Ingolstadt. Fue observador muy activo y construyó por sí mismo varios aparatos. Le dieron mucha fama su “Cosmografía (Landshut, 1524) y su principal obra “Astronomicum Caesareum” (Ingolstadt, 1540). Fue el primero que descubrió que las colas de los cometas estaban siempre dirigidas en sentido contrario al Sol.

REINHOLD, Erasmus (1511-1553), de Saalfeld, Turingia, donde murió de la peste. Desde 1536 fue profesor de matemáticas en Wittenberg, con Rheticus, y como éste uno de los primeros partidarios de Copérnico; basándose en las nuevas teorías, calculó tablas de los planetas, que publicó con el título de “Prutenicae tabulae coelestium motuum” (Wittenberg, 1551).

RHETICUS, Georg Joachim (1514-1576), de Feldkirch, Vorarlberg. Estudió en Zurich y después en Wittenberg, en donde fue profesor de matemáticas (1536-1542); pasó luego a desempeñar el mismo cargo en Leipzig y posteriormente en Hungría. En 1539 se reunió con Copérnico en Frauenburgo; desde este último punto escribió a Schoner, de Nurenberg, a manera de prólogo, sobre la obra de Copérnico “De libris revolutionum Nicolai Copernici narratio prima” (Danzig, 1549).

GUILLERMUS IV (1532-1592), landgrave de Hesse; llamado “el Sabio”. Trabajador e inteligente protector de las matemáticas, de la Geografía y en especial de la Astronomía, construyó en su palacio de Cassel un observatorio, donde trabajó con Rothmann y Bürgi.

TYCHO (TYGE) BRAHE (14 de diciembre de 1546 al 13-24 de octubre de 1601), de Knudstrup, en Schonen, perteneciente entonces a Dinamarca; de antigua y noble familia. Prohibido por un hermano de su padre, se dedicó al estudio de la Jurisprudencia, y después de asistir durante tres años a la escuela de altos estudios de Copenhagen, pasó a Leipzig. La pasión que sentía por la Astronomía práctica, fue causa de que ejerciese su carrera con desagrado, y cuando podía, observaba empleando aparatos muy sencillos. Después de la disolución del Trienio pasó una corta temporada en su patria y de 1566 a 1570 prosiguió sus estudios en Wittenberg, Rostock y Basilea, entablando relaciones en sus viajes con astrónomos y químicos. Después de una corta permanencia en Augsburgo, regresó en 1570 a Dinamarca, y desde la muerte de su padre vivió con su tío Steen Bille, quien favoreció su inclinación hacia las
ciencias físicas y naturales o al menos no le puso dificultades. Su trabajo sobre la estrella nueva de 1572 le hizo célebre. En 1575 vuelve a viajar, especialmente a Cassel a casa del landgrave Guillermo de Hesse. Esta visita decidió el porvenir de Tycho. Federico II de Dinamarca, a quien el landgrave había llamado la atención sobre el gran talento de su compatriota, le hace quedar en Dinamarca cuando se iba a marchar a Basilea; le cede la isla Hveen, en el Sund, donde Tycho construyó sus célebres observatorios "Uranienburg" y "Sternenburg", y gracias a la espléndidez del rey instaló allí excelentes aparatos. Con numerosos ayudantes, entre los que sobresale "Longomontanus" (1562-1647), vive completamente dedicado a la exploración del cielo, demostrando su gran talento en la construcción y en el manejo de los aparatos. El trabajo principal llevado a efecto en Hveen fue la observación, durante muchos años, de las posiciones de los planetas, datos que sirvieron de base a Kepler para encontrar más tarde las leyes del movimiento de los mismos. Al ocurrir la muerte del rey Federico (1588) cambiaron radicalmente las circunstancias; los adversarios de Tycho minaron su posición en la corte, por lo que se decidió abandonar Dinamarca definitivamente, lo que realizó en 1597. Después de permanecer dos años en casa del conde Rantzau, en Wandsbeek, aceptó el nombramiento de astrónomo y matemático real de Rodolfo II de Praga. Apenas había empezado a dedicarse con tranquilidad a sus nuevos trabajos, ocurrió su muerte repentina, legando el caudal de sus preciosas observaciones a su sucesor y ayudante Kepler. Tycho había abierto nuevos horizontes en el arte de observar. Su obra principal, que contiene también su sistema planetario, es la "Astronomiae instauratae progymnasmata" (dos partes, Praga, 1602). En una segunda obra, "Astronomiae instauratae mechanica" (Wandsbeek, 1598), describe sus observatorios y aparatos.

MAESTLIN, Michael (1550-1631), de Göppingen, Württemberg. Estudió Teología y matemáticas en Tubinga, siendo nombrado magistrado en 1571 y diácono en 1576; fue profesor de matemáticas en Heidelberg en 1580 y desde 1583 desempeñó el mismo cargo en Tubinga. Fué maestro y amigo de Kepler.

BÜRGI, Jost, (1552-1631), de Liechtenstein, Suiza. Relojero y mecánico en 1579 fue nombrado "relojero real" de Guillermo de Hesse y posteriormente astrónomo; en 1603 pasó a Praga, donde vivió al lado del emperador Rodolfo y de Kepler, pero después volvió a Cassel. Inventó el compás de reducción e, independientemente de Neper, los logaritmos.
KEPLER (Keppler), Johannes (27 de diciembre de 1571-15 de noviembre de 1630), nació sietemesino, de padres pobres, en Weil, Württemberg. De niño fué débil y enfermizo y las viruelas le dejaron un aire de imbecilidad en la cara que duró toda su vida, la edad del crecimiento transcurrió para él bajo las peores circunstancias. Debido a los frecuentes cambios de residencia tuvo que interrumpir a menudo la asistencia a las aulas, que empezó en 1577, pero a pesar de ello se desarrolló tanto su talento que ya en 1584 pudo ingresar en el noviciado de Adelberg y dos años más tarde en el de Maulbronn. Después del examen de bachiller ingresó en 1589 en la célebre institución de Teología protestante de Tubinga y en 1591 obtuvo el título de maestro.

Kepler no pudo con la teología ni con la ortodoxia; las teorías de Copérnico le seducían, y el impulso de su vocación le indujo al estudio de la Astronomía y de las matemáticas. A principios de 1594 ocupó el cargo de profesor de matemáticas y moral en la escuela de Graz y este paso fué decisivo en su porvenir. Su obra "Prodromus dissertationum cosmographicarum continens mystèrium cosmographicum" (Tubinga, 1596) que esribió allí le atrajo la admiración de Galileo y Tycho. Graz no le conservó largo tiempo. Cuando en 1598 estalló en Austria la persecución contra los protestantes, tuvo que emigrar aceptando en otoño del mismo año una invitación de Tycho para tomar parte como ayudante en los trabajos de este astrónomo y calcular de nuevo las tablas de los planetas a base de las nuevas observaciones. Pronto la muerte de Tycho li-bró a Kepler del desagradable trato de aquél.

Kepler fué nombrado "matemático imperial" en sustitución de Tycho, con un sueldo de 500 florines. La estancia en Praga constituyó probablemente el tiempo mejor de la vida científica de Kepler; allí descubrió sus dos primeras leyes, que explica en la "Astronomía nova... de Motibus stellae Martis" (Praga, 1609), fundó la dióptrica y la teoría de los anteojos en "Ad Vitellionem paralipomena" (Tranfort, 1604) y "Dieoptrice" (Augsburg, 1611). Pero cuánto más crecía su celebridad científica tanto más difícil y más triste se le hacía la vida, las enfermedades y la muerte de individuos de su familia, la falta de dinero — su sueldo no se le pagó jamás completo — le obligó a hacer "calendarios y pronósticos de poquísimos valores". Al ocurrir la muerte de su imperial protector Rodolfo II, tuvo que aceptar un empleo en el Gymnasium de Linz donde se trasladó en 1612, pero hasta más tarde no pudo concluir las tablas de los planetas que constituye su principal trabajo astronómico. Estas Tablas aparecieron en 1627, bajo título de "Tabulae Rudolphinæ" y fueron el fundamento de todos los cálculos plane-
tarios realizados durante un siglo. El afán de Kepler era en pri-
mer término, descubrir el secreto de la constitución del sistema
planetario, cuya naturaleza creía sujeta a relaciones numéricas sen-
cillas. Por esto su obra predilecta fué la publicada en 1619, en Linz,
"Harmonices mundi libri V", expresión literaria de estos esfuerzos
en que aparece como resultado más importante la tercera ley del
movimiento de los planetas. Aquel sabio incansable publicó además,
durante este intervalo, otros varios trabajos, lo cual es tanto más
de admirar cuanto que su vida no era más placida que antes. Des-
pués de perder a su primera esposa (1611) volvió a contraer matrim-
onio en 1613, pero los hijos que hubo de este nuevo matrimonio
fueron muriendo todos, excepto dos. A ello se añadió una nueva
desgracia: el proceso seguido contra su anciana madre por bruja,
que le obligó, en 1620, a volver a su patria donde residió algún
tiempo, logrando por fin salvar del suplicio a la pobre mujer. Gra-
ves contratiempos pasó también Kepler a causa de la guerra de los
Treinta años.

Todo esto contribuyó a que se trasladase en 1628 a Sagan, don-
de residía Wallenstein, a quien ya conocía por haberle hecho el ho-
róscopo. El emperador Fernando II ofreció satisfacerle a Kepler las
pagas que acreditaba, pero aun cuando apoyó al gran astrónomo
en sus trabajos científicos, no le dió las pagas prometidas, inten-
tando un arreglo nombrándole profesor de la Universidad de Rost-
tock. Kepler no se conformó y abandonó a Sagan para hacer valer
sus derechos ante el Reichstag reunido en Ratisbona. El cansancio
le postró en cama al llegar al término de su viaje, y después de una
corta fiebre falleció el que tan duramente había sido tratado por
el destino el 15 de noviembre de 1630. Sus obras completas fueron
publicadas por Frisch (8 tomos, Francfort, 1858-1871).

N - E.
SOBRE LA CONFERENCIA
DEL SR. ERNESTO DE LA GUARDIA

El 19 del próximo pasado julio, se realizó la anunciada conferencia por el señor Ernesto de La Guardia, titulada "El sistema planetario", y que tuvo lugar en el salón La Argentina.

Inició el acto el presidente de la Asociación doctor Orestes J. Siutti, quien presentó al conferenciante en los términos que a continuación transcribimos:

Señoras, señores:

Por segunda vez en mi carácter de presidente de esta institución, me es grato dirigirlos la palabra desde esta tribuna, confirmando así que la Asociación Argentina Amigos de la Astronomía, no sólo cree y se robustece, sino que, al mismo tiempo, está en las mejores vías para llevar a buen término los propósitos que motivaron su organización.

Hemos visto formarse a nuestro derredor una atmósfera de simpatía; vamos poco a poco ensanchando el círculo de nuestras aspiraciones, y creo, sin jactancia, poder afirmar que nos hallamos en un momento decisivo para la vida de nuestra institución; pero que si nuestros esfuerzos no desmayan y la opinión sigue apoyándonos, este momento decisivo se traducirá en una victoria rotunda.

Y es porque la Asociación Argentina Amigos de la Astronomía, responde a una necesidad del ambiente, y no es una creación artificial, resultado de circunstancias del momento.

Pero no quiero alejarme del verdadero objeto de mis palabras. Y el objeto que las motiva es la presentación del conferenciante señor Ernesto de La Guardia, quien, aparte de sus altos méritos científicos y artísticos, es un estimado y antiguo amigo, un compañero en otro campo de actividad cultural. El señor de La Guardia, hijo de un distinguido y entusiasta cultor de la Astronomía, es un espíritu selecto, un extraordinario estudioso cuyas actividades se han esparcido, y con óptimos resultados, por los más variados campos de la investigación.

Musicólogo, crítico de arte, gran aficionado a la astronomía y a la física, amante del estudio, culto que profesa con verdadera devo-
ción, ha sido un precioso auxiliar de los Amigos de la Astronomía publicando en la Revista, trabajos de alto valor científico, y dando hoy una conferencia que “a priori” puede afirmarse que responderá a la fama tan legítimamente adquirida por el disertante; del cual para mejor conocimiento voy a dar algunos breves datos: una vez concluido el bachillerato, el señor Ernesto de La Guardia, al mismo tiempo que hacía estudios sobre literatura, música, historia del arte y estética, siguió los cursos de Ciencias Exactas en la Universidad de Madrid.

Durante ocho años fue miembro de la Sociedad Astronómica de Francia y durante tres de la Sociedad Belga de Astronomía.

Su padre perteneció también a esas instituciones, manteniendo una íntima amistad con el gran astrónomo francés Camilo Flammarion, a quien hospedó en su casa cuando el sabio visitó a Madrid. Aparte de sus importantes obras sobre crítica y estética musical, algunas de las cuales han sido traducidas a varios idiomas, y de su sobresaliente actuación como crítico, ha dado conferencias y publicado estudios sobre la pintura española, así como numerosos artículos tratando diversos temas literarios históricos y filosóficos.

También abordando temas científicos ha dado a conocer la teoría geológica de Wegener, acerca de las traslaciones continentales, y recientemente acaba de conmemorar el centenario del famoso químico y filósofo Humphry Davy con un interesante artículo sobre este sabio.

Nuestra Revista ha publicado un estudio referente a magnitudes estelares y astrofísicas de las estrellas de primera magnitud. Tiene inédito un tratado de acústica, recopilación y ampliación de las conferencias pronunciadas en los cursos libres dedicados a dicha materia en el Conservatorio Nacional, años 1926-27, y en donde el señor de La Guardia ejerce con alta autoridad su cátedra.

Nada más tengo que añadir, pues sé que deseáis escuchar la autorizada palabra del señor Ernesto de La Guardia, y ello me obliga a poner fin a esta presentación. Agradezco vuestra presencia y espero que con la colaboración de todos, podremos en lo sucesivo continuar reuniéndonos al amparo de una ciencia que todos admiramos, y cuyo conocimiento incesantemente perseguimos. He dicho.

Terminadas las palabras del presidente, que fueron acogidas con aplauso, el señor Ernesto de La Guardia inició su conferencia sobre “El sistema planetario”.

Comenzó el conferenciante manifestando que el tema que debía desarrollar era una síntesis, no sólo del sistema solar, sino de toda la ciencia de Urania. En efecto, recordar hipótesis cosmogónicas supone exponer teorías sobre una de las cuestiones más com-
plejas y arduas: la formación y evolución de las nebulosas. El Sol no es sino una de las innumerables estrellas que pueblan el espacio. Su cortejo planetario seguramente ha de significar un ejemplo entre infinidad de sistemas análogos. Nebulosas, estrellas, planetas y satélites, cometas, meteoritos o uranolitos, son todos los cuerpos celestes imaginables. Exponer las leyes de la mecánica celeste es abordar el problema de las fuerzas que definen la gravitación universal. Enumerar los diversos sistemas propuestos para explicar los movimientos de los astros nos hace evocar la historia de la astronomía, en su doble aspecto cosmográfico y cosmológico. Newton es la base del maravilloso edificio; pero Einstein nos sume en la inquietud de la duda, proyectando sombra sobre lo que parecía y quizá siga siendo eternamente viva luz.

Intentar reducir a una sola conferencia —dijo el disertante— el infinito y maravilloso problema del Universo es, pues, quimérico. Agregó que únicamente podría presentar un esquema de puntos y materias para cuyo estudio no es suficiente una vida entera. Algo así como el prefacio de un libro compuesto de muchos volúmenes, inmenso campo en el que desenvolverán sus actividades los “Amigos de la Astronomía”.

El señor de La Guardia expuso en líneas generales la hipótesis cosmogónica de Laplace, confrontándola con las modernas teorías de Faye, du Ligondés, la “planetesimal” de Chamberlain y la del abate Moreux, quien parece aclarar, satisfactoriamente el desconcertante misterio del movimiento retrógrado. A grandes rasgos hizo la historia de los conocimientos acerca del sistema solar: la intuición genial de Pitágoras, seguida por el enorme error de las apariencias que, oficializado por Ptolomeo prolongó el concepto geocéntrico hasta que Copérnico restableció gran parte de la verdad, si bien conservando todavía errores importantes, como el de la esfera de estrellas en el sistema heliocéntrico. Luego se refirió a la absurda hipótesis mixta de Tycho-Brahe, y al moderno descubrimiento de la traslación del Sol, pero no siguiendo como se creía su movimiento aislado hacia el “ápex” (punto de la constelación de la Lira, próximo a Vega), sino incluido en una de las inmensas corrientes estelares que surcan el espacio.

Al tratar de mecánica celeste, el conferenciante expuso las tres leyes de Kepler, cuyo carácter es cinemático, y la doble ley de Newton, de esencia dinámica, la cual expresa en su maravillosa síntesis el concepto de la gravitación universal. En seguida trazó gráficamente la demostración de la trayectoria que determina las órbitas planetarias, como resultante (diagonal) del paralelogramo
determinado por las fuerzas centrípeta y centrífuga; y precisó las velocidades de los planetas.

Luego explicó el concepto de paralaje, los diversos métodos empleados en su medida, y hablando de las distancias a que se hallan del Sol los planetas, hizo referencia a la famosa ley de Bode y a la progresión de Wolf sobre la que se basa, así como a las tentativas hechas posteriormente para encontrar una fórmula más perfecta, citando especialmente la de Armellini. La ley de Bode o de Titío —según debiera llamarse— está hoy generalmente considerada empírica, pero no faltan astrónomos eminentes, que aún le conceden trascendental importancia, juzgándola consecuencia directa de las leyes de gravitación. Y aquí el conferenciente expresó que en otra ocasión, con más tiempo, desarrollaría una idea personal sobre la unidad asombrosa y la relación íntima que parecen presentar los fenómenos vibratorios y el fraccionamiento de la nebulosa solar, origen de los mundos del sistema.

A continuación presentó un cuadro comparativo de las dimensiones del Sol y los planetas, y exhibiendo una serie de proyecciones luminosas, el señor de La Guardia las explicó, refiriendo las características generales de todos los elementos contenidos en nuestro sistema cósmico que rige y alumbrá el Sol.

El numeroso público que escuchó la conferencia tributó al señor de La Guardia una afectuosa demostración de simpatía; la conferencia fué dicha con gran erudición, claridad y elegancia expresiva, y sobre todo, con un entusiasmo y un calor que trascendieron a la concurridencia.

Se apreció no sólo al capacitado en la materia, sino también a un espíritu que siente por ella esa atracción irresistible que impulsa, sin descanso, a recorrer una vía cuyos resplandores jamás se apagan y que siempre, para un estudioso como el señor de La Guardia, brillan con igual intensidad y ofrecen nuevas posibilidades de conocimientos e incesantes deseos de extenderlos a quienes quieran y sepan aprender.

Sólida erudición y entusiasmo comunicativo; estas fueron las características de la notable conferencia del señor Ernesto de La Guardia.
Hemos recibido dos cartas de nuestro colaborador señor Ismael Gajardo, referentes a la materia que provocó la réplica de otro de nuestros colaboradores, el señor Martín Dartayet, que publicamos gustosamente de acuerdo con el carácter de tribuna imparcial que caracteriza a la "Revista Astronómica".

Santiago, 14 de julio de 1929.

Señor Presidente de la Asociación "Amigos de la Astronomía".

Dr. Orestes J. Siutti.

Buenos Aires.

Muy distinguido y estimado señor:

He tenido el honor de recibir el N° IV de su interesante Revista Astronómica, y he visto con agrado, en la sección "Objeciones y Réplicas", la reproducción de mi carta del 15 de junio, como asimismo la respuesta que ésta le ha merecido al señor Martín Dartayet.

El señor Dartayet tiene ciertas dudas respecto a lo que yo afirmo en dicha carta, aún cuando admite la posibilidad de que ello pueda ser efectivo.

Sus dudas nacen de que mi observación del 23 de julio de 1921, relativa al cometa Encke, no la encuentra registrada en ninguna de las publicaciones oficiales que él ha consultado.

En verdad, yo no me explico cómo ha podido ocurrir esto, pues mi observación del 23 de julio fue oportunamente comunicada al Observatorio de Córdoba y éste la transmiitió en seguida al Harvard College Observatory, en Boston, según consta en el documento que doy en seguida, y cuyo original tengo en mi poder.
Observatorio Astronómico de la Nación Argentina.

Agosto 1° de 1921.

Señor Ismael Gajardo

San Bernardo — Chile.

Muy señor mío:

Tengo el agrado de acusar recibo de su telegrama del 29 del próximo pasado. La tercera palabra del texto fué recibida "entre", la cual he interpretado como Encke. He transmitido el descubrimiento por cablegrama al Harvard College Observatory, Boston. Nuestro segundo Astrónomo, Hawkins, lo ha observado anoche y antenoché.

Felicítóle sinceramente por el acontecimiento. Reiterándole mis sentimientos más cordiales, me complazco en saludarle muy atte.

C. D. Perrine.
Director.

Debo hacerle presente que el telegrama sufrió un lamentable atraso en la trasmisión, y quizá a esto se deba que el Dr. Crommelín no haya podido registrarla debidamente, (mi observación del 23 de julio de 1921) en su Comet Catalogue, que publica bajo los auspicios de la Unión Astronómica Internacional.

En todo caso, puedo asegurarle al señor Dartayet que mi observación fué hecha el sábado 23 de julio, y así se comunicó al mundo astronómico en el telegrama de mi referencia.

Después de estas explicaciones, creo que el señor Dartayet reconocerá que mi observación del cometa Encke, en su reaparición de 1921, se anticipó en cuatro días a la de los señores Reid y Skjellerup.

Agradeciéndole la inserción de estas líneas, lo saluda muy atte., su affmo. y S. S.

Ismael Gajardo.
Santiago, 15 de julio de 1929.

Señor Presidente de la Asociación “Amigos de la Astronomía”,

Dr. Orestes J. Siutti.

Buenos Aires.

Muy distinguido y estimado señor:

Me permito incluirle dos croquis, con las posiciones del cometa Encke en los días 23 y 25 de julio de 1921, tal como aparecen en mi libreta de observaciones de esa fecha.

Le ruego que los publique en su interesante “Revisión Astronómica”, conjuntamente con mi carta de ayer, 14 de julio, pues esto contribuirá a disipar toda duda respecto a la prioridad o anterioridad de mi observación sobre la de los señores Skjellerup y Reid, y en la inteligencia de que la de estos señores se efectuó el 27 de julio de 1921.

También le incluyo un pequeño cuadro con las coordenadas de las estrellas de referencia.

Agradeciéndole mucho la publicación de mi carta, con los croquis y cuadro adjunto, tengo el honor de subscribirme de usted como su affmo. y S. S.

Ismael Gojardo.

Posición del cometa Encke, el Sábado 23 de Julio de 1921, a las 19 horas de T. C. de Santiago.
Posiciones medias de las Estrellas de Referencia
Tomadas del Catálogo de Newcomb para 1920.0

<table>
<thead>
<tr>
<th>Nombre de la estrella</th>
<th>Mag.</th>
<th>Ascensión recta</th>
<th>Var. Anual</th>
<th>Declinación</th>
<th>Var. Anual</th>
<th>Efeméridos que dan sus posiciones exactas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omikron Leonis</td>
<td>3.8</td>
<td>9h 36m 52s.98</td>
<td>+3° 20'4</td>
<td>+10°15'25",4</td>
<td>-16",30</td>
<td>Gr, París, San Fernando y Washington</td>
</tr>
<tr>
<td>Pi Leonis</td>
<td>4.9</td>
<td>9h 55m 59s.24</td>
<td>+3° 17'2</td>
<td>+8°25'43",1</td>
<td>-17",21</td>
<td>Ber, Gr, París y Washington</td>
</tr>
</tbody>
</table>

Posición del cometa Encke, el Lunes 25 de Julio de 1921, a las 19 horas de T. C. de Santiago.

Pi Leonis
(4, 9)

Mag. aproximada del cometa = 9.0
OBSERVACION DE OCULTACIONES DE ESTRELLAS POR LA LUNA. — Nuestro estimado consocio señor Alfredo Völsch nos comunica haber observado desde su observatorio, situado en Belgrano:

Latitud: — 34° 33' 41,8''. Longitud: — 3° 53' 50,95''
en perfectas condiciones la siguiente occultación que debía efectuarse según cálculo de predicción a las 21h 30m. Fecha: 15 de julio 1929.

Imersión en el borde oscuro: 21h 30m 42,5s
Estado del cronómetro: — 41,5s
Tiempo legal argentino: 21h 30m 01,--s

La comparación del estado del cronómetro la efectuó a las 22 horas del mismo día con el top radiotelegrááfico de la Dársena Norte.

Invitamos a los aficionados que observan occultaciones, quieran comunicar igualmente sus resultados, para su publicación en la Revista; una vez reunida una serie de observaciones, se harán los cálculos definitivos para la determinación del error de longitud de la Luna; estos resultados serán igualmente publicados.
NOTICIAS

Comunicamos a nuestros asociados, que la anunciada conferencia de la señora Teresa Berrino de Musso, no podrá ser celebrada a causa de haberse ausentado temporalmente nuestra distinguida colaboradora, por asuntos profesionales, a Santiago de Chile.

Lamentamos el hecho y esperamos que en otra oportunidad, la señora de Musso se hallará en condiciones de prestarnos su valiosa cooperación.

IMPORTANTÉ. Habiendo vencido en el pasado mes de junio el pago de las cuotas correspondientes a los socios activos, se ruega a éstos, quieran abonar el trimestre julio-agosto-setiembre, en la Secretaría, Rodríguez Peña 361 (Asociación Wagneriana de Buenos Aires), de las 14 a las 19 horas, cualquier día hábil.

A efectos de tener al corriente a los aficionados a la astronomía y al público en general acerca de los horarios que rigen en los Observatorios de Córdoba (Observatorio Astronómico de la Nación Argentina) y La Plata (Observatorio Astronómico de la Universidad Nacional), comunicamos a nuestros lectores que el primero no está a disposición del público por reconstrucción del edificio, cuyas obras terminarán en breve, y que el segundo tiene el siguiente horario para ser visitado: lunes, de 20 a 22 horas; martes, de 9 a 11 horas; jueves, de 14 a 16 horas; siempre que sean días hábiles y los lunes despejados.
De acuerdo con lo expresado en nuestros números anteriores, algunos señores pertenecientes a esta asociación permitirán a los demás socios que deseen hacer personalmente observaciones telescópicas, el uso de los aparatos de su propiedad, ventaja de que no podrán gozar los que aun no se hayan inscripto en los Amigos de la Astronomía.

Daremos ahora los nombres y domicilios de las personas que permitirán dichas observaciones y los días y horas de las mismas: señor Antonio R. Zúñiga, Hurlingham, P. C. P., los días segundo y cuarto sábado de cada mes, de 21 a 23 horas, previa comunicación telefónica, U. T. 93, Hurlingham; señor Alfredo Völsch, Vidal 2355, U. T. Belgrano 0131, todos los días hábiles, de las 20 a las 22 horas; y sábado, de 16 a 18 horas, previo aviso por teléfono, el día anterior, de las 19 a las 20 ½ horas; señor Carlos Cardalda, La Calandria 2166, primer y tercer viernes de cada mes, de 21 a 23 horas, previo aviso telefónico, el día anterior, de las 19 a las 20 ½ horas; señor Ulises Bergara, calle Esperanza 3615, los días martes, jueves y sábados, de 21 a 23 horas, previo aviso telefónico, el día anterior.

Los socios del interior y exterior que deseen hacer observaciones telescópicas en las condiciones más arriba expuestas, servanse comunicar previamente por carta su llegada a esta capital, al propietario o propietarios de los observatorios, de modo que puedan ser atendidos en cualquier momento.

Es necesario que los socios que deseen gozar de esta ventaja, presenten en los domicilios de los señores nombrados su carnet que los acredita como miembros de los Amigos de la Astronomía.

A objeto de obtener la mayor difusión posible de la "Revista Astronómica", la Comisión Directiva de los "Amigos de la Astronomía", ha resuelto abrir una subscripción a la Revista, al precio de cinco pesos anuales.

Los pagos del interior pueden hacerse en cheques, órdenes o giros postales, a nombre de la Asociación.

Esta disposición no dejará de ser apreciada por los aficionados a los estudios astronómicos, y, al mismo tiempo, facilitará el conocimiento de las actividades de esta Asociación, ayudándole en la obra que realiza.

Las subscripciones terminarán, sea cuál fuere su comienzo, el 30 de junio de cada año, y se publicarán diez números por año.
La nueva forma de esta publicación será la siguiente: el número de enero corresponderá a enero y febrero; el número de marzo corresponderá a marzo y abril. Los demás números corresponderán al mes de su fecha de salida.

I

Los fundadores de esta Asociación, como su título lo indica, son aficionados al estudio de la Astronomía, que se reúnen con el propósito de cultivarla y difundirla en su parte elemental.

Este preámbulo forma parte de los Estatutos.

II

Nombre y objeto de la Asociación

Artículo 1º — En la Ciudad de Buenos Aires fundase la Asociación Argentina Amigos de la Astronomía, cuyos fines son los siguientes:

a) Propender a la difusión de la ciencia astronómica, dictando clases elementales, organizando un ciclo anual de conferencias y otros actos destinados a fomentarla.

b) Editar una Revista mensual.

c) Organizar un Observatorio y una Biblioteca.

De los socios

Art. 2º — La Asociación reconoce cuatro categorías de socios, de ambos sexos:

a) FUNDADORES. Los concurrentes a la Asamblea en que se aprueben estos Estatutos y los que se asociaren hasta integrar el número de cien socios, abonando un año adelantado de la cuota social.

b) ACTIVOS. Todas las personas o entidades que contribuyan al sostenimiento de la Asociación con una cuota trimestral, manifestando su conformidad por escrito en los formularios que al efecto proporcionará la Secretaría.
c) HONORARIOS. La categoría de socio honorario importa una distinción que sólo puede ser acordada por la Asamblea, a propuesta de la C. D. Los socios honorarios están exentos de pago de cuotas.

d) COLABORADORES. Todos los que contribuyan desinteresadamente al sostenimiento de los fines que se propone esta entidad, los que serán aceptados por la C. D. a pedido de ésta o a solicitud de los interesados.

Los socios colaboradores están exentos del pago de cuotas.

Art. 3º — La contribución de los socios fundadores y activos queda fijada en la cuota trimestral de cinco pesos m/n. que deberá abonarse por adelantado.

Art. 4º — Todos los socios están obligados a cumplir y respetar estos Estatutos y los Reglamentos y resoluciones de la C. D., y abonar la cuota social con regularidad, bajo pena de apercibimiento, suspensión o separación de la entidad, según la gravedad de la falta.

Art. 5º — Los socios tendrán derecho:

a) A hacer uso del Observatorio y Biblioteca, dentro de los Reglamentos y disposiciones que dicte la C. D.

b) A asistir a las conferencias, clases y demás actos que se realicen.

c) A un número de la Revista de la Asociación.

(De los Estatutos de la Asociación).
Asociación Argentina
Amigos de la Astronomía

Comisión Directiva

Presidente Orestes J. Siutti.
Vice Presidente C. Grassi Díaz.
Secretario Carlos Cardalda.
Tesorero J. Eduardo Mackintosh.
Vocales Domingo R. Sanfeliú.
 " Roberto J. Carman.
 " Julio B. Jaimes Répide.
 " Gregorio J. R. Petroni.
 " Aníbal O. Olivieri.
Suplentes Juan Pataky.
 " Aldo Romaniello.
 " Xenofón F. Lurán.
<table>
<thead>
<tr>
<th>Nombre</th>
<th>Localidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orestes J. Siutti</td>
<td>Buenos Aires.</td>
</tr>
<tr>
<td>C. Grassi Díaz</td>
<td></td>
</tr>
<tr>
<td>Carlos Cardalda</td>
<td></td>
</tr>
<tr>
<td>J. Eduardo Mackintosh</td>
<td></td>
</tr>
<tr>
<td>Domingo R. Sanfeliú</td>
<td></td>
</tr>
<tr>
<td>Roberto J. Carman</td>
<td></td>
</tr>
<tr>
<td>J. B. Jaimes Repide</td>
<td></td>
</tr>
<tr>
<td>Gregorio J. R. Petroni</td>
<td></td>
</tr>
<tr>
<td>Aníbal O. Olivieri</td>
<td></td>
</tr>
<tr>
<td>Aldo Romanelli</td>
<td></td>
</tr>
<tr>
<td>Juan Palaky</td>
<td></td>
</tr>
<tr>
<td>Xenofón F. Lurán</td>
<td></td>
</tr>
<tr>
<td>Hugo J. Berra</td>
<td>Prov. de Buenos Aires.</td>
</tr>
<tr>
<td>Assoc. Wagneriana de Bs. As.</td>
<td>Buenos Aires.</td>
</tr>
<tr>
<td>Orestes Walter Siutti</td>
<td></td>
</tr>
<tr>
<td>Enrique Gallegos Serna</td>
<td></td>
</tr>
<tr>
<td>Jerónimo A. Rocca</td>
<td></td>
</tr>
<tr>
<td>Alfredo Völsch</td>
<td></td>
</tr>
<tr>
<td>Antonio Vázquez García</td>
<td></td>
</tr>
<tr>
<td>M. Eugenio Baños</td>
<td></td>
</tr>
<tr>
<td>Antonio R. Zúñiga</td>
<td>Prov. de Buenos Aires.</td>
</tr>
<tr>
<td>Ricardo E. Garbesi</td>
<td>Buenos Aires.</td>
</tr>
<tr>
<td>Oscar S. Bauzá</td>
<td></td>
</tr>
<tr>
<td>Estela Cardalda</td>
<td></td>
</tr>
<tr>
<td>Carlos López Buchardo</td>
<td></td>
</tr>
<tr>
<td>Ernesto de La Guardia</td>
<td></td>
</tr>
<tr>
<td>Andrée M. de Saint</td>
<td></td>
</tr>
<tr>
<td>Enrique Saint</td>
<td></td>
</tr>
<tr>
<td>José Estibales</td>
<td></td>
</tr>
<tr>
<td>José H. Pané</td>
<td></td>
</tr>
<tr>
<td>Enrique K. Pelletán</td>
<td></td>
</tr>
<tr>
<td>Enrique Durán</td>
<td></td>
</tr>
<tr>
<td>Sara Duarte de Garzón</td>
<td>Prov. de Córdoba.</td>
</tr>
<tr>
<td>Paul J. Hogan</td>
<td>Buenos Aires.</td>
</tr>
<tr>
<td>José Otero Pumar</td>
<td>Prov. de Buenos Aires.</td>
</tr>
<tr>
<td>Carlos Havenstein</td>
<td>Buenos Aires.</td>
</tr>
<tr>
<td>Alfredo Cernadas</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Location</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Carlos Pessina</td>
<td>Buenos Aires.</td>
</tr>
<tr>
<td>Amadeo Valladares</td>
<td></td>
</tr>
<tr>
<td>Enrique Vera</td>
<td></td>
</tr>
<tr>
<td>Francisco Curutchet</td>
<td></td>
</tr>
<tr>
<td>Juan José San Román</td>
<td>Montevideo.</td>
</tr>
<tr>
<td>Alberto Barni</td>
<td>Buenos Aires.</td>
</tr>
<tr>
<td>Pedro F. Napolitano</td>
<td></td>
</tr>
<tr>
<td>Angel Piatti</td>
<td></td>
</tr>
<tr>
<td>Ramona P. de Sanfeliú</td>
<td></td>
</tr>
<tr>
<td>Carlos A. Sanfeliú</td>
<td></td>
</tr>
<tr>
<td>Martín Kohelt</td>
<td></td>
</tr>
<tr>
<td>Juan Viñas</td>
<td></td>
</tr>
<tr>
<td>Emilio Richsinger</td>
<td></td>
</tr>
<tr>
<td>Juan Arceci</td>
<td></td>
</tr>
<tr>
<td>Rafael Mathé</td>
<td></td>
</tr>
<tr>
<td>Tomás Caggiano</td>
<td></td>
</tr>
<tr>
<td>José Galli Aspres</td>
<td></td>
</tr>
<tr>
<td>Ricardo J. Martí</td>
<td></td>
</tr>
<tr>
<td>Rubén Vila Ortiz</td>
<td></td>
</tr>
<tr>
<td>Martín Gil</td>
<td>Prov. de Córdoba.</td>
</tr>
<tr>
<td>Alberto Preckel</td>
<td>Prov. de Buenos Aires.</td>
</tr>
<tr>
<td>Ezio Matarazzo</td>
<td>Buenos Aires.</td>
</tr>
<tr>
<td>Francisco Javier Digironimo</td>
<td></td>
</tr>
<tr>
<td>Juan F. Delpini</td>
<td></td>
</tr>
<tr>
<td>Luis Viggiare</td>
<td></td>
</tr>
<tr>
<td>Bernardo Etchechon</td>
<td></td>
</tr>
<tr>
<td>Eduardo Madariaga</td>
<td>Prov. de Corrientes.</td>
</tr>
<tr>
<td>Francisco Madariaga</td>
<td></td>
</tr>
<tr>
<td>Sara Mackintosh</td>
<td>Buenos Aires.</td>
</tr>
<tr>
<td>Gabriela Fernández de Schió</td>
<td></td>
</tr>
<tr>
<td>Adolfo Mágica</td>
<td></td>
</tr>
<tr>
<td>Manuel Griffo</td>
<td></td>
</tr>
<tr>
<td>Martín Dartayet</td>
<td>Prov. de Buenos Aires.</td>
</tr>
<tr>
<td>Enrique Piñol</td>
<td></td>
</tr>
<tr>
<td>Juan G. Sury</td>
<td>Buenos Aires.</td>
</tr>
<tr>
<td>Ulises Bergara</td>
<td></td>
</tr>
<tr>
<td>Teodoro M. Bellocq</td>
<td></td>
</tr>
<tr>
<td>Océano Piacquadio Bergnes</td>
<td></td>
</tr>
<tr>
<td>Feo. Juan L. Fontaine</td>
<td></td>
</tr>
<tr>
<td>Richard J. Cleghorn</td>
<td></td>
</tr>
<tr>
<td>Eduardo Emery</td>
<td></td>
</tr>
<tr>
<td>Carl Zeiss Jena</td>
<td></td>
</tr>
<tr>
<td>Raúl A. Sorlini</td>
<td></td>
</tr>
<tr>
<td>José Máximo Ruco</td>
<td>Prov. de Buenos Aires.</td>
</tr>
<tr>
<td>Horacio F. Bustamante</td>
<td>Buenos Aires.</td>
</tr>
</tbody>
</table>
Activos

Pablo E. Fortín Buenos Aires.
Pedro C. Vallejos Prov. de Buenos Aires.
José Sánchez Varela Buenos Aires.
J. Braun Rubén " "
Antonio Cano Acevedo Prov. de Buenos Aires.
Aníbal N. González " "
Luis E. Vicat " "
Manuel Ferrari Olazábal Buenos Aires.
Julio Lencioni Prov. de Santa Fe
Cayetano Cimminelli Prov. de Buenos Aires.
Enrique Galli Prov. de Santa Fe
Juan Scopelitti Buenos Aires.
Urbano Vizcaya Prov. de Buenos Aires.
Juan Luis Beltrán " "
Eduardo Viglia Buenos Aires.
A. Saiber " "
José M. Nanni " "
José M. del Campo " "
Juan F. Irurzun " "
Enrique F. C. Fischer Prov. de Buenos Aires.
José L. Araya Buenos Aires.
Arsenio Rodríguez " "
Carlos L. Segers " "
Armando Angeletti " "
Shary A. Arcelus Núñez Prov. de Buenos Aires.

Colaboradores

Teresa Berrino de Musso .. Buenos Aires.
Antonio R. Zúñiga " "
Ernesto de La Guardia " "
Alfredo Völsch " "